National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Magnetic orientation in mammals
Tejmlová, Kristýna ; Němec, Pavel (advisor) ; Vácha, Martin (referee)
Earth's magnetic field can provide animal with both directional and positional information. The ability to perceive and utilize information extracted from the geomagnetic field is called magnetoreception. Magnetoreception mechanisms remain largely unknown. Three main hypotheses are currently supported by experimental evidence. The light-independent mechanisms are based either on electromagnetic induction or on biogenic magnetite. The light-dependent mechanism is based on specific chemical reaction between radical pairs. Perception of the geomagnetic field facilitates both long- and short-distance orientation of animals. Some animals exhibit the magnetic alignment, i.e., spontaneuos preference for a certain geomagnetic direction. Another manifestation of magnetoreception is magnetic compass (polarity- or inclination-based, depending on species), which enable an animal to determine the azimuth, i.e., the angle between the direction of motion and geomagnetic field vector. Magnetic map sense enable an animal to determine its position and direction to the goal destination, most likely utilizing the inclination and the intensity of the geomagnetic field as navigational cues. Magnetic orientation of mammals seems to be a widespread phenomenon. Light- independend, polarity compass has been reported in...
Magnetic orientation in mammals
Tejmlová, Kristýna ; Němec, Pavel (advisor) ; Vácha, Martin (referee)
Earth's magnetic field can provide animal with both directional and positional information. The ability to perceive and utilize information extracted from the geomagnetic field is called magnetoreception. Magnetoreception mechanisms remain largely unknown. Three main hypotheses are currently supported by experimental evidence. The light-independent mechanisms are based either on electromagnetic induction or on biogenic magnetite. The light-dependent mechanism is based on specific chemical reaction between radical pairs. Perception of the geomagnetic field facilitates both long- and short-distance orientation of animals. Some animals exhibit the magnetic alignment, i.e., spontaneuos preference for a certain geomagnetic direction. Another manifestation of magnetoreception is magnetic compass (polarity- or inclination-based, depending on species), which enable an animal to determine the azimuth, i.e., the angle between the direction of motion and geomagnetic field vector. Magnetic map sense enable an animal to determine its position and direction to the goal destination, most likely utilizing the inclination and the intensity of the geomagnetic field as navigational cues. Magnetic orientation of mammals seems to be a widespread phenomenon. Light- independend, polarity compass has been reported in...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.