National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Pacemakers and electromagnetic interference
Lojková, Lea ; Sekora, Jiří (referee) ; Havlíková, Marie (advisor)
This work is focused on cardiac pacemakers and sources of electronic interference. The project partly follows another thesis made in the same field of interest (Ing. Kulík, Dept. of Control, Measurement and Instrumentation) and uses similar methodics of measurement. In the theoretical part of the work, the principles of nuclear magnetic resonance and magnetic resonance imaging are briefly explained and most common methods used in MRI are described, as well as the definition of a cardiac pacemaker, main events in pacemaker history and development. Cardiac pacemaker as a system is described in more detail, including construction, control, most common sensors and the ways of use. Electromagnetic interference of cardiac pacemakers and implantable cardioverter defibrillators is processed via a complete review since the oldest scientific paper from December 1991 till May 2009. In the second part, measuring of magnetic field is described, as well as the possibilities of monitoring of its effects on cardiac pacemakers. In fact, there are two possible ways of measuring. off-line exposition of the sample to the magnetic field followed by data acquisition via pacemaker programmer or the continuous on-line monitoring of the pacemaker activity by the means of measuring PC card. While the first method is reliable in cases where the is no sign of malfunction and makes the experiments with a dynamic exposition of sample possible, in some cases it detects a virtual malfunction also in cases where in reality the devices works perfectly. The second method enables a reliable continuous monitoring of pacemaker activity during the whole experiment and its only problem is a higher level of signal noise caused by the sample movement.
Pacemakers and electromagnetic interference
Lojková, Lea ; Sekora, Jiří (referee) ; Havlíková, Marie (advisor)
This work is focused on cardiac pacemakers and sources of electronic interference. The project partly follows another thesis made in the same field of interest (Ing. Kulík, Dept. of Control, Measurement and Instrumentation) and uses similar methodics of measurement. In the theoretical part of the work, the principles of nuclear magnetic resonance and magnetic resonance imaging are briefly explained and most common methods used in MRI are described, as well as the definition of a cardiac pacemaker, main events in pacemaker history and development. Cardiac pacemaker as a system is described in more detail, including construction, control, most common sensors and the ways of use. Electromagnetic interference of cardiac pacemakers and implantable cardioverter defibrillators is processed via a complete review since the oldest scientific paper from December 1991 till May 2009. In the second part, measuring of magnetic field is described, as well as the possibilities of monitoring of its effects on cardiac pacemakers. In fact, there are two possible ways of measuring. off-line exposition of the sample to the magnetic field followed by data acquisition via pacemaker programmer or the continuous on-line monitoring of the pacemaker activity by the means of measuring PC card. While the first method is reliable in cases where the is no sign of malfunction and makes the experiments with a dynamic exposition of sample possible, in some cases it detects a virtual malfunction also in cases where in reality the devices works perfectly. The second method enables a reliable continuous monitoring of pacemaker activity during the whole experiment and its only problem is a higher level of signal noise caused by the sample movement.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.