National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
How Intracellular Pathogens Manipulate Cellular Trafficking.
Petrů, Markéta ; Doležal, Pavel (advisor) ; Pyrih, Jan (referee)
Many intracellular single-celled organisms belong to medically important human pathogens. The selected parasites are subject of this thesis - Chlamydia spp., Legionella pneumophila, Trypanosoma cruzi and Toxoplasma gondii - as well as their interactions with the vesicular transport of the host cell. Basic pathways of vesicular transport are delineated and important participating molecules described. Furthermore, the effector proteins of pathogens that interact with these molecules are included. The special chapter is devoted to phenomenon of mimetics of SNARE proteins by bacteria. The manuscript concludes with a chapter on LpSNARE of Legionella pneumophila, which was found in our laboratory and which is a topic of my experimental work herein.
Structure and function of the invasion apparatus of microsporidia
Dohnálek, Vít ; Doležal, Pavel (advisor) ; Vávra, Jiří (referee)
Microsporidia are obligate intracellular parasites that cause significant economic damage and can infect humans. They had evolved highly specialized invasion apparatus that is unique to them. During the invasion the sporoplasm is released from the spore wall and it is transferred to the host cytoplasm through the polar tube. Current research on the invasion apparatus has been focused mainly on the polar tube that is its most prominent structure. Polaroplast and posterior vacuole remain out of the main interest, although they are necessary for the activation and execution of the invasion. If the right combination of environmental factors occurs, the organization of the polaroplast begins to change, the posterior vacuole starts to swell and the polar tube is discharged. Sporoplasm is eventually pushed through the tube into the host cell by growing posterior vacuole. The mechanism has not been explained yet however plenty of theories are trying to explain the germination. This work summarizes current theories and knowledge of structure and function of particular parts of the invasion apparatus. Key words: Microsporidia, invasion, polar tube, intracellular parasitism, germination
Structure and function of the invasion apparatus of microsporidia
Dohnálek, Vít ; Doležal, Pavel (advisor) ; Vávra, Jiří (referee)
Microsporidia are obligate intracellular parasites that cause significant economic damage and can infect humans. They had evolved highly specialized invasion apparatus that is unique to them. During the invasion the sporoplasm is released from the spore wall and it is transferred to the host cytoplasm through the polar tube. Current research on the invasion apparatus has been focused mainly on the polar tube that is its most prominent structure. Polaroplast and posterior vacuole remain out of the main interest, although they are necessary for the activation and execution of the invasion. If the right combination of environmental factors occurs, the organization of the polaroplast begins to change, the posterior vacuole starts to swell and the polar tube is discharged. Sporoplasm is eventually pushed through the tube into the host cell by growing posterior vacuole. The mechanism has not been explained yet however plenty of theories are trying to explain the germination. This work summarizes current theories and knowledge of structure and function of particular parts of the invasion apparatus. Key words: Microsporidia, invasion, polar tube, intracellular parasitism, germination
How Intracellular Pathogens Manipulate Cellular Trafficking.
Petrů, Markéta ; Doležal, Pavel (advisor) ; Pyrih, Jan (referee)
Many intracellular single-celled organisms belong to medically important human pathogens. The selected parasites are subject of this thesis - Chlamydia spp., Legionella pneumophila, Trypanosoma cruzi and Toxoplasma gondii - as well as their interactions with the vesicular transport of the host cell. Basic pathways of vesicular transport are delineated and important participating molecules described. Furthermore, the effector proteins of pathogens that interact with these molecules are included. The special chapter is devoted to phenomenon of mimetics of SNARE proteins by bacteria. The manuscript concludes with a chapter on LpSNARE of Legionella pneumophila, which was found in our laboratory and which is a topic of my experimental work herein.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.