National Repository of Grey Literature 8 records found  Search took 0.00 seconds. 
Condenser
Juráš, Filip ; Baláš, Marek (referee) ; Pospíšil, Jiří (advisor)
The Master´s thesis is dealing with water-cooled condensers and is splitted into three main parts. The first section provides general knowledge about condensers and heat exchangers, including the basic information of hydrophobic surfaces. These surfaces were used during verifying the impact of hydrophobicity on the heat exchange in water steam. The second section describes an experimental testing. It shows the difference between hydrophobic and nonhydrophobic surfaces and their impact on the heat exchange. The third and the last part of this thesis is design and calculation of water-cooled condenser. The design of the condenser is supported by drawings placed in attachement.
Characterization of extracellular and intracellular organic matter produced by phytoplankton in relation to water treatment
Zezulová, Tereza ; Pivokonský, Martin (advisor) ; Janda, Václav (referee)
This study investigated characteristics of algal organic matter (AOM) derived from four species (cyanobacteria Microcystis aeruginosa and Merismopedia tenuissima, diatom Fragilaria crotonensis and green alga Chlamydomonas geitleri) dominating phytoplanktonic populations in the reservoirs supplying drinking water treatment plants - the water reservoirs Švihov (the Želivka water treatment plant) and Josefův Důl (the Jizerské Mountains), Czech Republic. The four mentioned microorganisms were cultivated under laboratory conditions and the algal growth was quantified by a number of cells, chrorophyll-a and optical density. Production of AOM was evaluated by dissolved organic carbon concentration measurements, by specific UV absorbance, the amount of peptide/protein and non-peptide (carbohydrate) contents, water affinity and molecular weight (MW). AOM of all considered microorganisms are formed predominantly by hydrophilic substances with low values of specific UV absorbance (< 2 L/(m.mg)). Considerable portions of both types of AOM, i.e. extracellular and cellular organic matters are represented by substances with MW < 1 kDa or with MW > 100 kDa. However, the total amount and composition of AOM significantly depend on algal species and their growth. The obtained results imply that the knowledge of AOM...
Depozition of hydrophobic fluorocarbon coatings by plasma polymerization methods
Petr, Martin
In this work we study the deposition of hydrophobic fluorocarbon coatings by magnetron sputtering of polymeric PTFE target. We show what is the influence of the conditions of the deposition process - the pressure in the chamber, the RF power - on the properties of the resulting CFx thin films (their chemical composition, morphology, wettability, barrier and optical properties, stability and possible bio-aplications). In this work we use a novel way to control the morphology and the chemical composition of the surface of thin films independently by using nano-particles, both metal (Pt, Cu, Al) and polymeric (C:H, Nylon). With nano-particles we can control the hydrophobicity of thin films and we can prepare super-hydrophobic films. Work has an experimental character.
Drop coating deposition Raman spectroscopy of biologically important molecules
Kuižová, Alžbeta ; Kočišová, Eva (advisor) ; Holoubek, Aleš (referee)
Drop coating deposition Raman (DCDR) spectroscopy is a special method of Raman spectroscopy, which is based on the evaporation of solvent from a drop of solution or suspension on a hydrophobic surface. This typically leads to the formation of ring-shaped drying pattern, often called as "coffee ring". As a result a preconcentration of a material and higher intensity of Raman signal in comparison with Raman scattering from solution is obtained. In this work several hydrophobic surfaces with different roughness and hydrophobicity were compared: a smooth substrate with polytetrafluorethylen (pPTFE) coating and nanorough substrates where surface hydrophobicity was formed by deposited cupper or argent nanoparticles with different concentration. It was shown that for DPPC liposome suspension stronger preconcentration is obtained by means of a nanorough substrate. When different nanorough substrate compared, no better improvement was acquired. As for the drying of drops at different temperatures (from 15řC to 60řC) deposited on the smooth pPTFE substrate and the substrate with argent nanoparticles, it was observed that Raman spectra did not reveal any spectral changes corresponding to phase transition of lipid. In case of drying at temperatures higher than a temperature of the phase transition, non-homogeneities...
Characterization of extracellular and intracellular organic matter produced by phytoplankton in relation to water treatment
Zezulová, Tereza ; Pivokonský, Martin (advisor) ; Janda, Václav (referee)
This study investigated characteristics of algal organic matter (AOM) derived from four species (cyanobacteria Microcystis aeruginosa and Merismopedia tenuissima, diatom Fragilaria crotonensis and green alga Chlamydomonas geitleri) dominating phytoplanktonic populations in the reservoirs supplying drinking water treatment plants - the water reservoirs Švihov (the Želivka water treatment plant) and Josefův Důl (the Jizerské Mountains), Czech Republic. The four mentioned microorganisms were cultivated under laboratory conditions and the algal growth was quantified by a number of cells, chrorophyll-a and optical density. Production of AOM was evaluated by dissolved organic carbon concentration measurements, by specific UV absorbance, the amount of peptide/protein and non-peptide (carbohydrate) contents, water affinity and molecular weight (MW). AOM of all considered microorganisms are formed predominantly by hydrophilic substances with low values of specific UV absorbance (< 2 L/(m.mg)). Considerable portions of both types of AOM, i.e. extracellular and cellular organic matters are represented by substances with MW < 1 kDa or with MW > 100 kDa. However, the total amount and composition of AOM significantly depend on algal species and their growth. The obtained results imply that the knowledge of AOM...
Depozition of hydrophobic fluorocarbon coatings by plasma polymerization methods
Petr, Martin
In this work we study the deposition of hydrophobic fluorocarbon coatings by magnetron sputtering of polymeric PTFE target. We show what is the influence of the conditions of the deposition process - the pressure in the chamber, the RF power - on the properties of the resulting CFx thin films (their chemical composition, morphology, wettability, barrier and optical properties, stability and possible bio-aplications). In this work we use a novel way to control the morphology and the chemical composition of the surface of thin films independently by using nano-particles, both metal (Pt, Cu, Al) and polymeric (C:H, Nylon). With nano-particles we can control the hydrophobicity of thin films and we can prepare super-hydrophobic films. Work has an experimental character.
Condenser
Juráš, Filip ; Baláš, Marek (referee) ; Pospíšil, Jiří (advisor)
The Master´s thesis is dealing with water-cooled condensers and is splitted into three main parts. The first section provides general knowledge about condensers and heat exchangers, including the basic information of hydrophobic surfaces. These surfaces were used during verifying the impact of hydrophobicity on the heat exchange in water steam. The second section describes an experimental testing. It shows the difference between hydrophobic and nonhydrophobic surfaces and their impact on the heat exchange. The third and the last part of this thesis is design and calculation of water-cooled condenser. The design of the condenser is supported by drawings placed in attachement.
Depozition of hydrophobic fluorocarbon coatings by plasma polymerization methods
Petr, Martin ; Kylián, Ondřej (advisor) ; Kudrna, Pavel (referee)
In this work we study the deposition of hydrophobic fluorocarbon coatings by magnetron sputtering of polymeric PTFE target. We show what is the influence of the conditions of the deposition process - the pressure in the chamber, the RF power - on the properties of the resulting CFx thin films (their chemical composition, morphology, wettability, barrier and optical properties, stability and possible bio-aplications). In this work we use a novel way to control the morphology and the chemical composition of the surface of thin films independently by using nano-particles, both metal (Pt, Cu, Al) and polymeric (C:H, Nylon). With nano-particles we can control the hydrophobicity of thin films and we can prepare super-hydrophobic films. Work has an experimental character.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.