National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Modal analysis of vocal folds models with descrete parameters
Lekeš, Filip ; Švancara, Pavel (referee) ; Hájek, Petr (advisor)
Bachelor’s thesis deals with modal analysis of computed models of human vocal folds. It’s about finite element and analytical model where values first eigenfrequencies come under male vocal folds. Research part applies to biomechanics of vocal the human voice, which is followed by an overview of computational models. Finite element model is completely created and solved by ANSYS Workbench commercial program, which uses the finite element method to simulate a problem. Solution of analytical model uses freely available Python programming language. Analysis of the results and comparison of approaches belong to main objectives of the presented work. The proposed analytical model can serve future students for detailed understanding of human vocal oscillations.
Dynamic characteristics obtained from solution of simple vocal folds models
Kubíček, Radek ; Švancara, Pavel (referee) ; Hájek, Petr (advisor)
Bachelor’s thesis concerns the biomechanics of voice and its aim is to obtain dynamic characteristics of simple analytical and numerical vocal folds models. Thesis includes main theories of voice production and thorough analysis of the widest used computational models. Essential is an anatomical and physiological introduction including basic pathologies. Behaviour of computational models mentioned in the bibliographic research is demonstrated by the dynamics characteristics gained by modal analysis and by the solid mechanics equation solution. Eigenfrequencies come under range from literature. The aim of thesis is comparison of analytical and numerical solution and particular computational models.
Modal analysis of vocal folds models with descrete parameters
Lekeš, Filip ; Švancara, Pavel (referee) ; Hájek, Petr (advisor)
Bachelor’s thesis deals with modal analysis of computed models of human vocal folds. It’s about finite element and analytical model where values first eigenfrequencies come under male vocal folds. Research part applies to biomechanics of vocal the human voice, which is followed by an overview of computational models. Finite element model is completely created and solved by ANSYS Workbench commercial program, which uses the finite element method to simulate a problem. Solution of analytical model uses freely available Python programming language. Analysis of the results and comparison of approaches belong to main objectives of the presented work. The proposed analytical model can serve future students for detailed understanding of human vocal oscillations.
Dynamic characteristics obtained from solution of simple vocal folds models
Kubíček, Radek ; Švancara, Pavel (referee) ; Hájek, Petr (advisor)
Bachelor’s thesis concerns the biomechanics of voice and its aim is to obtain dynamic characteristics of simple analytical and numerical vocal folds models. Thesis includes main theories of voice production and thorough analysis of the widest used computational models. Essential is an anatomical and physiological introduction including basic pathologies. Behaviour of computational models mentioned in the bibliographic research is demonstrated by the dynamics characteristics gained by modal analysis and by the solid mechanics equation solution. Eigenfrequencies come under range from literature. The aim of thesis is comparison of analytical and numerical solution and particular computational models.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.