National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
RNAi of the a subunit of human translation initiation factor 3 (eIF3).
Peclinovská, Lucie ; Stiborová, Marie (advisor) ; Martínková, Markéta (referee)
Translation initiation is the first step of protein synthesis that captures the flow of gene expression pathway in all living organisms. The advantage of regulation of gene expression at the level of translation initiation is that it allows for more rapid changes in the proteome and serves as the rate limiting step under certain conditions such as stress. This process is masterminded by many initiation factors. One of them, a multisubunit eukaryotic initiation factor 3 (eIF3), is a very efficient player in this field taking a part in the most of the initiation steps. The largest subunit of the eIF3 complex is called eIF3a p170 and TIF32 in mammals and yeast, respectively, and at least in yeast, it was shown to represent an essential constituent of the translational machinery. This work is based on all that has been learned about the eIF3a roles in translation initiation in the model organism of yeast Saccharomyces cerevisiae in effort to examine the degree of the functional conservation with its human ortholog. This is achieved by the RNAi-mediated knock-down of eIF3a in HeLa and HEK cell lines followed by variety of well established assays to monitor translational status of eIF3a depleted cells. In the first part, I describe optimization of the RNA interference protocol with respect to the choice...
RNAi of the a subunit of human translation initiation factor 3 (eIF3).
Peclinovská, Lucie ; Stiborová, Marie (advisor) ; Martínková, Markéta (referee)
Translation initiation is the first step of protein synthesis that captures the flow of gene expression pathway in all living organisms. The advantage of regulation of gene expression at the level of translation initiation is that it allows for more rapid changes in the proteome and serves as the rate limiting step under certain conditions such as stress. This process is masterminded by many initiation factors. One of them, a multisubunit eukaryotic initiation factor 3 (eIF3), is a very efficient player in this field taking a part in the most of the initiation steps. The largest subunit of the eIF3 complex is called eIF3a p170 and TIF32 in mammals and yeast, respectively, and at least in yeast, it was shown to represent an essential constituent of the translational machinery. This work is based on all that has been learned about the eIF3a roles in translation initiation in the model organism of yeast Saccharomyces cerevisiae in effort to examine the degree of the functional conservation with its human ortholog. This is achieved by the RNAi-mediated knock-down of eIF3a in HeLa and HEK cell lines followed by variety of well established assays to monitor translational status of eIF3a depleted cells. In the first part, I describe optimization of the RNA interference protocol with respect to the choice...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.