National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
DYNAMIC ANALYSIS OF THE SOIL-FOUNDATION INTERACTION
Martinásek, Josef ; prof. Ing. Alois Materna, CSc., MBA (referee) ; Kanický,, Viktor (referee) ; Salajka, Vlastislav (advisor)
Thesis deals with problems of the soil-structure interaction. In the theoretical part is described the approach to mathematical modeling of structure-foundation-soil interaction. The subsoil models are further described in detail, including the models with piles (both static and dynamics models). In the next chapter there is described the dynamics theory of the systems with single or more degrees of freedom. There is also an analysis of propagation, reflection and refraction of mechanical one-dimensional waves (P-wave, S-wave) and spatial waves (P- wave, SV-wave, SH-wave) and waves in homogeneous half-space (R-wave L-wave). The numerical analysis is logically sorted from hand calculation of the parameter change influence on the modal characteristics to complex computational FEM model of the machine with a foundation on piles placed in the spatial block of soil. Numerical studies aim to determine the influence of the subsoil model on the modal characteristics and thus confirm the absolute necessity of the subsoil model in tasks of dynamics. The next goal is to determine the appropriate key parameters of the computational model: the size of finite element, suitable shape of subsoil model, suitable inclination of boundary condition and suitable boundary conditions. For creating of set of computational models was used language APDL in conjunction with ANSYS software interface. All used input files are listed in the Annex.
The exploitation of parallelization to numerical solutions regarding problems in nonlinear dynamics
Rek, Václav ; Krejsa,, Martin (referee) ; Vala, Jiří (referee) ; Němec, Ivan (advisor)
The main aim of this thesis is the exploration of the potential use of the parallelism of numerical computations in the field of nonlinear dynamics. In the last decade the dramatic onset of multicore and multi-processor systems in combination with the possibilities which now provide modern computer networks has risen. The complexity and size of the investigated models are constantly increasing due to the high computational complexity of computational tasks in dynamics and statics of structures, mainly because of the nonlinear character of the solved models. Any possibility to speed up such calculation procedures is more than desirable. This is a relatively new branch of science, therefore specific algorithms and parallel implementation are still in the stage of research and development which is attributed to the latest advances in computer hardware, which is growing rapidly. More questions are raised on how best to utilize the available computing power. The proposed parallel model is based on the explicit form of the finite element method, which naturaly provides the possibility of efficient parallelization. The possibilities of multicore processors, as well as parallel hybrid model combining both the possibilities of multicore processors, and the form of the parallelism on a computer network are investigated. The designed approaches are then examined in addressing of the numerical analysis regarding contact/impact phenomena of shell structures.
The exploitation of parallelization to numerical solutions regarding problems in nonlinear dynamics
Rek, Václav ; Krejsa,, Martin (referee) ; Vala, Jiří (referee) ; Němec, Ivan (advisor)
The main aim of this thesis is the exploration of the potential use of the parallelism of numerical computations in the field of nonlinear dynamics. In the last decade the dramatic onset of multicore and multi-processor systems in combination with the possibilities which now provide modern computer networks has risen. The complexity and size of the investigated models are constantly increasing due to the high computational complexity of computational tasks in dynamics and statics of structures, mainly because of the nonlinear character of the solved models. Any possibility to speed up such calculation procedures is more than desirable. This is a relatively new branch of science, therefore specific algorithms and parallel implementation are still in the stage of research and development which is attributed to the latest advances in computer hardware, which is growing rapidly. More questions are raised on how best to utilize the available computing power. The proposed parallel model is based on the explicit form of the finite element method, which naturaly provides the possibility of efficient parallelization. The possibilities of multicore processors, as well as parallel hybrid model combining both the possibilities of multicore processors, and the form of the parallelism on a computer network are investigated. The designed approaches are then examined in addressing of the numerical analysis regarding contact/impact phenomena of shell structures.
DYNAMIC ANALYSIS OF THE SOIL-FOUNDATION INTERACTION
Martinásek, Josef ; prof. Ing. Alois Materna, CSc., MBA (referee) ; Kanický,, Viktor (referee) ; Salajka, Vlastislav (advisor)
Thesis deals with problems of the soil-structure interaction. In the theoretical part is described the approach to mathematical modeling of structure-foundation-soil interaction. The subsoil models are further described in detail, including the models with piles (both static and dynamics models). In the next chapter there is described the dynamics theory of the systems with single or more degrees of freedom. There is also an analysis of propagation, reflection and refraction of mechanical one-dimensional waves (P-wave, S-wave) and spatial waves (P- wave, SV-wave, SH-wave) and waves in homogeneous half-space (R-wave L-wave). The numerical analysis is logically sorted from hand calculation of the parameter change influence on the modal characteristics to complex computational FEM model of the machine with a foundation on piles placed in the spatial block of soil. Numerical studies aim to determine the influence of the subsoil model on the modal characteristics and thus confirm the absolute necessity of the subsoil model in tasks of dynamics. The next goal is to determine the appropriate key parameters of the computational model: the size of finite element, suitable shape of subsoil model, suitable inclination of boundary condition and suitable boundary conditions. For creating of set of computational models was used language APDL in conjunction with ANSYS software interface. All used input files are listed in the Annex.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.