National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Use of nanotechnologies, especially CNT, in silicate composites
Jarolím, Tomáš ; Bodnárová, Lenka (referee) ; Martinec,, Petr (referee) ; Kalina,, Michal (referee) ; Hela, Rudolf (advisor)
Thesis theme were nanomaterials and its implementation to cementitious materials. Theoretical part has deal with description of carbon nanotubes types, their properties, production, ways of dispergation, nanotoxicity and CNT’s influence on silicate composites characteristics. Experimental part was divided to 5 stages. The first stages were focused on choosing appropriate carbon nanotubes and surfactants. In the next stage settings of US homogenizator were determinate (amplitude, US energy dosage, time). The part of US homogenizator setting process was observing influence of liquid environment characteristics (especially pH) on surface tension and particle distribution and influence of US energy on CNT walls damages through TEM. After dispergation parameters optimalization cement pastes were prepared and hydration temperature, hydration heat and viscosity were observed. Then testing specimens from cement mortar were prepared and tested form strength characteristics. Last stage was concrete production and their examination: compressive strength, flexural strength, static modulus of elasticity, dynamic modulus of elasticity, tensile splitting strength, depth of penetration of water under pressure, resistance of cement concrete surface to water and defrosting chemicals and determination of frost resistance of concrete. Samples with CNT addition had better strength characteristics and better resistance of penetration of water under pressure, water and defrosting chemicals resistance and frost resistance. Result of thesis is comprehensive study of CNT dispersion production and implementation CNT dispersion to concrete including testing specific concrete characteristics.
Use of nanotechnologies, especially CNT, in silicate composites
Jarolím, Tomáš ; Bodnárová, Lenka (referee) ; Martinec,, Petr (referee) ; Kalina,, Michal (referee) ; Hela, Rudolf (advisor)
Thesis theme were nanomaterials and its implementation to cementitious materials. Theoretical part has deal with description of carbon nanotubes types, their properties, production, ways of dispergation, nanotoxicity and CNT’s influence on silicate composites characteristics. Experimental part was divided to 5 stages. The first stages were focused on choosing appropriate carbon nanotubes and surfactants. In the next stage settings of US homogenizator were determinate (amplitude, US energy dosage, time). The part of US homogenizator setting process was observing influence of liquid environment characteristics (especially pH) on surface tension and particle distribution and influence of US energy on CNT walls damages through TEM. After dispergation parameters optimalization cement pastes were prepared and hydration temperature, hydration heat and viscosity were observed. Then testing specimens from cement mortar were prepared and tested form strength characteristics. Last stage was concrete production and their examination: compressive strength, flexural strength, static modulus of elasticity, dynamic modulus of elasticity, tensile splitting strength, depth of penetration of water under pressure, resistance of cement concrete surface to water and defrosting chemicals and determination of frost resistance of concrete. Samples with CNT addition had better strength characteristics and better resistance of penetration of water under pressure, water and defrosting chemicals resistance and frost resistance. Result of thesis is comprehensive study of CNT dispersion production and implementation CNT dispersion to concrete including testing specific concrete characteristics.
Concretes with high temperature fly ash activated by nanoparticles.
Labaj, Martin ; Bodnárová, Lenka (referee) ; Hela, Rudolf (advisor)
The aim of this thesis is to summarize the knowledge regarding reduction of negative impact of high volumes of fly ash in HVFA concretes using nanotechnology and experimentally verify the findings. To compensate the inferior early-age properties, it is possible to use active nanoparticles, such as nanosilica or nanolimestone. The first step of the experiment was the production of stable nanoparticle’s dispersions using ultrasonic homogenization and UV/Vis spectroscopy. In subsequent steps the influence of nanoparticle’s presence on cementitious materials’ properties was verified on cement pastes and mortars with 40 a 60 % of fly ash. The best variant was then used to produce nano-modified HVFA concretes. Even at a minimum dose, the positive effect on early-age properties indicates the usefulness of nanoparticles in technology of concrete. An important contribution of this thesis is also the acquired knowledge related to the nanoparticle’s behavior and handling.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.