National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Using Computer Aided Engineering for analyse the detector
Novotný, Marek ; Špinka, Jiří (referee) ; Maxa, Jiří (advisor)
This diploma thesis deals with electron microscopy. Examined equipment is environmental scanning electron microscope (ESEM), namely scintillation a detector of the microscope. There is solved the influence of the profile of holes in diaphragms to the resulting pressure and gas flow on the path of secondary electrons at the detector. Introductory part of thesis informs about microscopy in general, with concentration on electron microscopy; especially on scanning microscope, because research is taken just on the environmental scanning electron microscope. Another part informs about both general principles of dynamics of gases and with finite volume method. Another part deals with concrete used software and with setting of individual parameters for calculation. At the beginning of calculation are used five basic profiles of holes in diaphragms for pressure 1000 Pa in the chamber of the sample. For modelling individual shapes is used 3D parametric modeller SolidWorks. Analysis of circulation of secondary electrons through detector is made by using Cosmos FloWorks module. The most suitable type of diaphragms is chosen from measured models. Another part of diploma thesis deals with measuring of chosen types of diaphragms for more pressures in the chamber of the sample; the pressure is 200, 400, 600, 800 and 1000 Pa. The outcomes of this research are both models of pressure and speed of circulation inside the detector and graphically processed values by using different diaphragms, respectively one type of a diaphragm in different pressures. Production drawings of each diaphragm, together with calculated models, are enclosed.
Using Computer Aided Engineering for analyse the detector
Novotný, Marek ; Špinka, Jiří (referee) ; Maxa, Jiří (advisor)
This diploma thesis deals with electron microscopy. Examined equipment is environmental scanning electron microscope (ESEM), namely scintillation a detector of the microscope. There is solved the influence of the profile of holes in diaphragms to the resulting pressure and gas flow on the path of secondary electrons at the detector. Introductory part of thesis informs about microscopy in general, with concentration on electron microscopy; especially on scanning microscope, because research is taken just on the environmental scanning electron microscope. Another part informs about both general principles of dynamics of gases and with finite volume method. Another part deals with concrete used software and with setting of individual parameters for calculation. At the beginning of calculation are used five basic profiles of holes in diaphragms for pressure 1000 Pa in the chamber of the sample. For modelling individual shapes is used 3D parametric modeller SolidWorks. Analysis of circulation of secondary electrons through detector is made by using Cosmos FloWorks module. The most suitable type of diaphragms is chosen from measured models. Another part of diploma thesis deals with measuring of chosen types of diaphragms for more pressures in the chamber of the sample; the pressure is 200, 400, 600, 800 and 1000 Pa. The outcomes of this research are both models of pressure and speed of circulation inside the detector and graphically processed values by using different diaphragms, respectively one type of a diaphragm in different pressures. Production drawings of each diaphragm, together with calculated models, are enclosed.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.