National Repository of Grey Literature 5 records found  Search took 0.01 seconds. 
High Temperature Deformation Mechanisms
Heczko, Milan ; Gröger,, Roman (referee) ; Spätig, Philipp (referee) ; Kruml, Tomáš (advisor)
Dvě pokročilé vysoce legované austenitické oceli s Fe-Ni-Cr matricí byly studovány za podmínek nízkocyklové únavy jak za pokojové tak vysoké teploty. Široká škála experimentálních a charakterizačních nástrojů byla použita ke studiu vzájemně souvisejících aspektů zahrnujících chemické složení slitin, mikrostrukturu, deformační mechanismy a celkovou odezvu materiálů na externě působící zatížení. Klíčové mechanismy a faktory definující mechanické vlastnosti a výkonnost v reálném provozu byly analyzovány a diskutovány v souvislosti s materiálovým designem. • Standardní únavové experimenty byly provedeny za pokojové teploty a teploty 700°C. Byly získány křivky cyklického zpevnění/změkčení, cyklické deformační křivky, Coffin-Manson a Wöhlerovy křivky. • Ke studiu změn mikrostrukturního stavu slitin v důsledku cyklického zatěžování za pokojové a zvýšené teploty byla použita široká škála technik charakterizace pomocí elektronové mikroskopie. • Únavové chování, pevnost a cyklická plastická odezva studovaných materiálů byla vysvětlena v souvislosti s mikrostrukturními změnami a mikrostrukturními aspekty deformačních mechanismů jak za pokojové tak za zvýšených teplot. • Bylo zjištěno, že Sanicro 25 vykazuje nejvyšší pevnostní charakteristiky ze všech materiálů stejné třídy. Výjimečné vlastnosti této slitiny jsou spojeny s populacemi dvou typů nanočástic, koherentními precipitáty bohatými na měď a nanočásticemi typu MX s charakteristikou disperzoidu. Tyto nanočástice mají klíčový vliv na pevnost a celkovou cyklickou odezvu. V důsledku interakcí s precipitáty způsobujících zachytávání je pohyb dislokací v Sanicro 25 významně zpomalen, což vede k potlačení normálních procesů zotavení obvykle vedoucích ke změně uspořádání dislokační struktury tak, aby byla celková vnitřní energie systému co nejnižší. Takové uspořádání je tvořeno například dislokačními buňkami. Jelikož jsou procesy zotavení potlačeny, dislokační struktura za vysokých teplot je charakteristická homogenní distribucí dislokací o vysoké hustotě s velkou mírou vzájemných interakcí. V kombinaci s dalšími mechanismy zpevnění jako jsou precipitáty a substituční prvky v tuhém roztoku, tyto deformační mechanismy vedou k významnému zvýšení cyklické pevnosti za vysokých teplot.
Study of advanced high strength magnesium alloys by in situ techniques
Fekete, Klaudia ; Dobroň, Patrik (advisor) ; Lejček, Pavel (referee) ; Mayama, Tsuyoshi (referee)
The aim of the present doctoral thesis was to reveal the active deformation mechanisms in novel high strength magnesium (Mg) alloys using advanced in-situ techniques with high time and space resolutions. The deformation behavior of two extruded Mg-LPSO alloys with a different volume fraction of the long-period stacking ordered (LPSO) phase was investigated in tension and compression at room temperature and in compression at 200 řC, 300 řC, and 350 řC. In order to support the results obtained by in-situ acoustic emission and synchrotron diffraction methods, detailed microstructure investigation was provided by transmission and scanning electron microscopy, particularly the backscattered electron imaging and electron backscatter diffraction technique were used. The results indicate that both temperature and the LPSO phase content significantly influence the plasticity of the magnesium matrix, particularly they affect the activation of extension twins and non-basal slip. Moreover, both parameters have a high impact on the formation of the deformation kinks in the LPSO phase. Keywords: Mg-LPSO alloys, deformation mechanisms, acoustic emission, synchrotron diffraction, in-situ methods.
High Temperature Deformation Mechanisms
Heczko, Milan ; Gröger,, Roman (referee) ; Spätig, Philipp (referee) ; Kruml, Tomáš (advisor)
Dvě pokročilé vysoce legované austenitické oceli s Fe-Ni-Cr matricí byly studovány za podmínek nízkocyklové únavy jak za pokojové tak vysoké teploty. Široká škála experimentálních a charakterizačních nástrojů byla použita ke studiu vzájemně souvisejících aspektů zahrnujících chemické složení slitin, mikrostrukturu, deformační mechanismy a celkovou odezvu materiálů na externě působící zatížení. Klíčové mechanismy a faktory definující mechanické vlastnosti a výkonnost v reálném provozu byly analyzovány a diskutovány v souvislosti s materiálovým designem. • Standardní únavové experimenty byly provedeny za pokojové teploty a teploty 700°C. Byly získány křivky cyklického zpevnění/změkčení, cyklické deformační křivky, Coffin-Manson a Wöhlerovy křivky. • Ke studiu změn mikrostrukturního stavu slitin v důsledku cyklického zatěžování za pokojové a zvýšené teploty byla použita široká škála technik charakterizace pomocí elektronové mikroskopie. • Únavové chování, pevnost a cyklická plastická odezva studovaných materiálů byla vysvětlena v souvislosti s mikrostrukturními změnami a mikrostrukturními aspekty deformačních mechanismů jak za pokojové tak za zvýšených teplot. • Bylo zjištěno, že Sanicro 25 vykazuje nejvyšší pevnostní charakteristiky ze všech materiálů stejné třídy. Výjimečné vlastnosti této slitiny jsou spojeny s populacemi dvou typů nanočástic, koherentními precipitáty bohatými na měď a nanočásticemi typu MX s charakteristikou disperzoidu. Tyto nanočástice mají klíčový vliv na pevnost a celkovou cyklickou odezvu. V důsledku interakcí s precipitáty způsobujících zachytávání je pohyb dislokací v Sanicro 25 významně zpomalen, což vede k potlačení normálních procesů zotavení obvykle vedoucích ke změně uspořádání dislokační struktury tak, aby byla celková vnitřní energie systému co nejnižší. Takové uspořádání je tvořeno například dislokačními buňkami. Jelikož jsou procesy zotavení potlačeny, dislokační struktura za vysokých teplot je charakteristická homogenní distribucí dislokací o vysoké hustotě s velkou mírou vzájemných interakcí. V kombinaci s dalšími mechanismy zpevnění jako jsou precipitáty a substituční prvky v tuhém roztoku, tyto deformační mechanismy vedou k významnému zvýšení cyklické pevnosti za vysokých teplot.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.