National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
The printing of the complex shapes by DLP technology from the ceramic materials
Popek, Tomáš ; Roleček, Jakub (referee) ; Spusta, Tomáš (advisor)
This work is focused on the characteristics of advanced ceramics, the basic principles of the 3D printing, and the division of methods for the 3D printing of ceramic materials. It also discusses the removal of the binder from the printed samples, subsequent sintering, and associated TGA analysis and high-temperature dilatometry. Al2O3 ceramic powder was used to print ceramic components, from which two suspensions with a weight fill of 60 and 65 % were prepared. These components have been progressively subjected to TGA analysis and high-temperature dilatometry. The results of the two measurements were used to determine the debinding and sintering cycle. Debinding took place in a vacuum at 410 . As a result, the weights decreased to 63.91 ± 0.45% and 68.62 ± 1.08% of the original weights. The parts were sintered for 120 minutes at 1550 and then the relative densities were measured, which were 87.89 ± 1.05 % and 88.36 ± 0.81 %. The complex components were a turbine with a height of h = 4.4 mm and a diameter of d = 27 mm, a hexagon head screw with a length of 20 mm and an M8 thread, and a nut with a height of 6.5 mm and a width of 13 mm with an M8 thread.
The printing of the complex shapes by DLP technology from the ceramic materials
Popek, Tomáš ; Roleček, Jakub (referee) ; Spusta, Tomáš (advisor)
This work is focused on the characteristics of advanced ceramics, the basic principles of the 3D printing, and the division of methods for the 3D printing of ceramic materials. It also discusses the removal of the binder from the printed samples, subsequent sintering, and associated TGA analysis and high-temperature dilatometry. Al2O3 ceramic powder was used to print ceramic components, from which two suspensions with a weight fill of 60 and 65 % were prepared. These components have been progressively subjected to TGA analysis and high-temperature dilatometry. The results of the two measurements were used to determine the debinding and sintering cycle. Debinding took place in a vacuum at 410 . As a result, the weights decreased to 63.91 ± 0.45% and 68.62 ± 1.08% of the original weights. The parts were sintered for 120 minutes at 1550 and then the relative densities were measured, which were 87.89 ± 1.05 % and 88.36 ± 0.81 %. The complex components were a turbine with a height of h = 4.4 mm and a diameter of d = 27 mm, a hexagon head screw with a length of 20 mm and an M8 thread, and a nut with a height of 6.5 mm and a width of 13 mm with an M8 thread.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.