National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Transport and Deposition of Aerosol in Human Respiratory Tract
Elcner, Jakub ; Kratochvíl, Zdeněk (referee) ; Volavý, Jaroslav (referee) ; Jícha, Miroslav (advisor)
One of approaches in treatment of respiratory system diseases is the use of drug particles suspended in air in the form of aerosol. It is a fast and non-invasive method for the delivery of medicine into tracheobronchial tree or bloodstream. Although the method of the medication dosage by means of inhalers or nebulizers is well known, the effectiveness of that approach is still an actual issue. A significant amount of drugs delivered with the use of the medication dosage never reaches its primary destination and the drugs deposit in antecendent areas of respiratory tract where their presence is not required. This thesis deals with a problem of the passage of monodisperse homogenous aerosol with micron-size particles through the upper parts of the respiratory tract. This work was created with the use of numerical simulations carried out by means of the finite volume method in the commercial code based on computational fluid dynamics. Turbulence was modelled using the Reynolds averaged Navier–Stokes equations with the two-equation eddy viscosity k-omega SST model. The main output of the thesis is the analysis of airflow in two respiratory regimes. Stationary and cyclic cases of the flow behaviour were considered and the validation of simulated results with experiments performed on similar geometries was carried out. Furthermore, the review of simplified lung models and their geometries was made and the acquired results were used for the calculation of air distribution in the respiratory tract. The last part of the thesis deals with the calculation of particle deposition and with the analysis of the results.
Transport and Deposition of Aerosol in Human Respiratory Tract
Elcner, Jakub ; Kratochvíl, Zdeněk (referee) ; Volavý, Jaroslav (referee) ; Jícha, Miroslav (advisor)
One of approaches in treatment of respiratory system diseases is the use of drug particles suspended in air in the form of aerosol. It is a fast and non-invasive method for the delivery of medicine into tracheobronchial tree or bloodstream. Although the method of the medication dosage by means of inhalers or nebulizers is well known, the effectiveness of that approach is still an actual issue. A significant amount of drugs delivered with the use of the medication dosage never reaches its primary destination and the drugs deposit in antecendent areas of respiratory tract where their presence is not required. This thesis deals with a problem of the passage of monodisperse homogenous aerosol with micron-size particles through the upper parts of the respiratory tract. This work was created with the use of numerical simulations carried out by means of the finite volume method in the commercial code based on computational fluid dynamics. Turbulence was modelled using the Reynolds averaged Navier–Stokes equations with the two-equation eddy viscosity k-omega SST model. The main output of the thesis is the analysis of airflow in two respiratory regimes. Stationary and cyclic cases of the flow behaviour were considered and the validation of simulated results with experiments performed on similar geometries was carried out. Furthermore, the review of simplified lung models and their geometries was made and the acquired results were used for the calculation of air distribution in the respiratory tract. The last part of the thesis deals with the calculation of particle deposition and with the analysis of the results.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.