National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Topology and function of the transmembrane domain of colicin U produced by Shigella boydii
Dolejšová, Tereza ; Fišer, Radovan (advisor) ; Krůšek, Jan (referee)
Colicin U is a protein produced by strains of bacterium Shigella boydii. It exhibits antibacterial activity against some bacterial strains Shigella and Escherichia. Based on sequence homology with colicins A, B and N, the colicin U is classified as a pore-forming colicin. Interaction of colicin U with attacked bacteria is ensured by three-step mechanism: 1) First colicin U interacts with surface receptors OmpA, OmpF and core of LPS. 2) Thereafter the colicin is translocated to periplasm through interaction with Tol proteins. 3) Finally colicin U interacts with the inner membrane of the attacked bacteria causing its depolarization. In this thesis I demonstrated pore-forming features of colicin U and further observed characteristics and properties of these pores. Using methods of measuring on black lipid membranes I determined a single channel conductance (19 pS), ion selectivity, the influence of various conditions on the behaviour of the pores. These findings, in many cases, correspond to the findings on other related colicins. Furthermore, I successfully determined the pore diameter of colicin U ( ≈ 0,8 nm). The next section of the thesis focuses on creation of single cysteine mutations of colicin U. Subsequently I produced five mutant variants of colicin U and verified their functionality so that...
Topology and function of the transmembrane domain of colicin U produced by Shigella boydii
Dolejšová, Tereza ; Fišer, Radovan (advisor) ; Krůšek, Jan (referee)
Colicin U is a protein produced by strains of bacterium Shigella boydii. It exhibits antibacterial activity against some bacterial strains Shigella and Escherichia. Based on sequence homology with colicins A, B and N, the colicin U is classified as a pore-forming colicin. Interaction of colicin U with attacked bacteria is ensured by three-step mechanism: 1) First colicin U interacts with surface receptors OmpA, OmpF and core of LPS. 2) Thereafter the colicin is translocated to periplasm through interaction with Tol proteins. 3) Finally colicin U interacts with the inner membrane of the attacked bacteria causing its depolarization. In this thesis I demonstrated pore-forming features of colicin U and further observed characteristics and properties of these pores. Using methods of measuring on black lipid membranes I determined a single channel conductance (19 pS), ion selectivity, the influence of various conditions on the behaviour of the pores. These findings, in many cases, correspond to the findings on other related colicins. Furthermore, I successfully determined the pore diameter of colicin U ( ≈ 0,8 nm). The next section of the thesis focuses on creation of single cysteine mutations of colicin U. Subsequently I produced five mutant variants of colicin U and verified their functionality so that...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.