National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Teorie agregátů fotosyntetických molekul: spektroskopie, struktura, přenosové jevy
Lalinský, Ján ; Mančal, Tomáš (advisor) ; Šanda, František (referee)
Title: Theory of aggregates of photosynthetic molecules: spectroscopy, structure, transport phenomena Author: Ján Lalinský Institute: Institute of Physics of Charles University Supervisor of the master thesis: RNDr. Tomáš Mančal, PhD., Institute of Physics of Charles University Abstract. A theory of absorption of light in an isotropic solution of molecules was formulated on the basis of electromagnetic theory of par- ticles with attention to relativistic nature of their interaction and its im- pact on the spectrum of circular dichroism. Calculations of the absorption spectra of simple systems were performed to demonstrate the properties of the mathematical model. Also calculations of the absorption spectra of the models of the bacteriochlorophyll dimer which were proposed as possible basic unit in the lamellar model of the interior of a chlorosome were performed. The experimental spectra of solution of non-aggregated bacteriochlorophyll were used to fit the parameters of the mathematical model of the molecule and for these parameters the spectra of the pro- posed models of a dimer were calculated. It has been found that the new non-electrostatic terms in the description of the mutual interaction of the parts of the molecule are negligible for calculations of ordinary absorption spectrum, but they have...
Teorie agregátů fotosyntetických molekul: spektroskopie, struktura, přenosové jevy
Lalinský, Ján ; Mančal, Tomáš (advisor) ; Šanda, František (referee)
Title: Theory of aggregates of photosynthetic molecules: spectroscopy, structure, transport phenomena Author: Ján Lalinský Institute: Institute of Physics of Charles University Supervisor of the master thesis: RNDr. Tomáš Mančal, PhD., Institute of Physics of Charles University Abstract. A theory of absorption of light in an isotropic solution of molecules was formulated on the basis of electromagnetic theory of par- ticles with attention to relativistic nature of their interaction and its im- pact on the spectrum of circular dichroism. Calculations of the absorption spectra of simple systems were performed to demonstrate the properties of the mathematical model. Also calculations of the absorption spectra of the models of the bacteriochlorophyll dimer which were proposed as possible basic unit in the lamellar model of the interior of a chlorosome were performed. The experimental spectra of solution of non-aggregated bacteriochlorophyll were used to fit the parameters of the mathematical model of the molecule and for these parameters the spectra of the pro- posed models of a dimer were calculated. It has been found that the new non-electrostatic terms in the description of the mutual interaction of the parts of the molecule are negligible for calculations of ordinary absorption spectrum, but they have...
Study of light-harvesting antennae based on bacteriochlorophyll aggregates
Alster, Jan ; Pšenčík, Jakub (advisor) ; Fidler, Vlastimil (referee) ; Balaban, Teodor Silviu (referee)
Title: Study of light-harvesting antennae based on bacteriolorophyll aggregates Author: Jan Alster Department: Department of Chemical Physics and Optics Supervisor of the doctoral thesis: doc. RNDr. Jakub Pšenčík, Ph.D. Abstract: Artificial photosynthesis is a potential future source of renewable energy. e light-to-emical energy conversion process starts with capturing light. Chlorosomes of green phototropic bacteria are probably the most efficient light-harvesting antenna found in the Nature. Moreover, their unique structure based on a self-organised ag- gregate of pigment molecules makes them relatively easy to mimic in vitro. is work explores formation and properties of self-assembled aggregates of bacteriolorophyll molecules in aqueous solvents by means of steady state and time resolved optical spec- troscopy with time resolution in the microsecond to femtosecond range. Various ag- gregation inducing agents have been tested. Isoprenoid quinones introduce a redox- dependent excitation energy quening meanism into the bacteriolorophyll aggre- gates. Carotenoids enhance the light-harvesting properties of the aggregates by cap- turing light in the spectral region where bacteriolorophyll does not and transferring the excitation energy to bacteriolorophyll. e results indicate that self-assembled...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.