National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Cell inclusions in microscopic eukaryotes
Pilátová, Jana
This thesis reports, for the first time, a systematic study identifying various cell inclusions across the broad diversity of all major eukaryotic supergroups. Raman microspectroscopy technique was employed as a powerful technique, which is becoming the method of the first choice for such studies. In Chapter 1, the spatial reconstruction of chloroplasts of the unicellular zygnematophyte Cylindrocystis sp. (Streptophyta) revealed "empty spaces" inside. Subsequent analysis showed massive accumulations of polyphosphate, which is not located in the cytoplasm as in other species, but inside the chloroplasts. This newly discovered ability of the zygnematophytes, a sister group of terrestrial plants, to accumulate polyphosphate leads us to speculate about a possible adaptation to extreme Arctic conditions or even a preadaptation leading to plant terrestrialization. Chapter 2 summarizes the serendipitous discovery of purine crystalline inclusions in dinoflagellates and other microalgae. Investigated dinoflagellate species comprised zooxanthellae, the endosymbionts of reef-building corals, and the species causing toxic algal blooms. Purine crystals were further shown to act as dynamic high-capacity nitrogen storage. To show how widespread purine inclusions are, a revision of crystalline inclusions in all...
Cell inclusions in microscopic eukaryotes
Pilátová, Jana ; Schwarzerová, Kateřina (advisor) ; Gierlinger, Notburga (referee) ; Prášil, Ondřej (referee)
This thesis reports, for the first time, a systematic study identifying various cell inclusions across the broad diversity of all major eukaryotic supergroups. Raman microspectroscopy technique was employed as a powerful technique, which is becoming the method of the first choice for such studies. In Chapter 1, the spatial reconstruction of chloroplasts of the unicellular zygnematophyte Cylindrocystis sp. (Streptophyta) revealed "empty spaces" inside. Subsequent analysis showed massive accumulations of polyphosphate, which is not located in the cytoplasm as in other species, but inside the chloroplasts. This newly discovered ability of the zygnematophytes, a sister group of terrestrial plants, to accumulate polyphosphate leads us to speculate about a possible adaptation to extreme Arctic conditions or even a preadaptation leading to plant terrestrialization. Chapter 2 summarizes the serendipitous discovery of purine crystalline inclusions in dinoflagellates and other microalgae. Investigated dinoflagellate species comprised zooxanthellae, the endosymbionts of reef-building corals, and the species causing toxic algal blooms. Purine crystals were further shown to act as dynamic high-capacity nitrogen storage. To show how widespread purine inclusions are, a revision of crystalline inclusions in all...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.