National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Computational Modelling of Self- oscillations of the Human Vocal Folds
Hájek, Petr ; Šidlof,, Petr (referee) ; Radolf, Vojtěch (referee) ; Švancara, Pavel (advisor)
The presented dissertation thesis deals with a simulation of the human phonation in terms of latest theories. Phonation is considered here as a bi-directional fluid-structure-acoustic interaction, where the interaction between all three physical domains occurs due to the unsteady viscous compressible Navier-Stokes equations. There is a solid knowledge background in the first part of the thesis. It concerns the latest concepts in computational modeling of the human phonation, the most important and recent theories about the human voice production and some key aspects of the human anatomy, physiology and pathology. Also voice assessment is discussed. The second part of the thesis describes an in-depth analysis of a phonation simulation in a planar computational model. The basic concepts proceed from algorithms developed in the Institute of Solid Mechanics, Mechatronics and Biomechanics. Created models are able to reproduce sounds of all Czech vowels and the most common evaluated parameters very close to physiological ranges. The simulated pathology, Reinke's edema, is demonstrated in order to explore its influence on the vowel sound. The third part focuses on modeling of phonation in a spatial computational model. All Czech vowels are simulated also here and compared to the planar model and to actual measurement. The spatial model serves as the starting point to modeling of a longitudinal pretension incorporated in the vocal folds. In the last part of the thesis, a modeling of the phonation with vocal folds pretension is investigated. Although the models are tuned to a rather soft phonation, the results are in agreement with the relevant physiologic phenomena. While the spatial model is highly computationally expensive, a hybrid planar model with pretension is proposed. A special attention is paid to the analysis of self-sustained oscillation of the vocal folds. It is shown, the planar model cannot reproduce such kind of oscillation in the actual version, albeit time of oscillation was considerably extended. On the other hand, oscillation of the spatial vocal folds are stabilized without effects accompanying subduing of oscillation. It can be supposed that the spatial model is able to reproduce self-sustained oscillation as a basic principle present during the human phonation.
Mass Models of the Vocal Folds under Harmonic Excitation
Řeřuchová, Ivana ; Švancara, Pavel (referee) ; Hájek, Petr (advisor)
This bachelor’s thesis belongs to the branch of bioacoustics and biomechanics. It deals with the modelling of simple analytic models of vocal folds, specifically with their forced oscillation caused by a harmonic excitation force. The thesis also includes an anatomy of the respiratory tract and the vocal system, a description of the principal theories of voice production, and an overview of the vocal folds’ mass models.
Mass Models of the Vocal Folds under Harmonic Excitation
Řeřuchová, Ivana ; Švancara, Pavel (referee) ; Hájek, Petr (advisor)
This bachelor’s thesis belongs to the branch of bioacoustics and biomechanics. It deals with the modelling of simple analytic models of vocal folds, specifically with their forced oscillation caused by a harmonic excitation force. The thesis also includes an anatomy of the respiratory tract and the vocal system, a description of the principal theories of voice production, and an overview of the vocal folds’ mass models.
Computational Modelling of Self- oscillations of the Human Vocal Folds
Hájek, Petr ; Šidlof,, Petr (referee) ; Radolf, Vojtěch (referee) ; Švancara, Pavel (advisor)
The presented dissertation thesis deals with a simulation of the human phonation in terms of latest theories. Phonation is considered here as a bi-directional fluid-structure-acoustic interaction, where the interaction between all three physical domains occurs due to the unsteady viscous compressible Navier-Stokes equations. There is a solid knowledge background in the first part of the thesis. It concerns the latest concepts in computational modeling of the human phonation, the most important and recent theories about the human voice production and some key aspects of the human anatomy, physiology and pathology. Also voice assessment is discussed. The second part of the thesis describes an in-depth analysis of a phonation simulation in a planar computational model. The basic concepts proceed from algorithms developed in the Institute of Solid Mechanics, Mechatronics and Biomechanics. Created models are able to reproduce sounds of all Czech vowels and the most common evaluated parameters very close to physiological ranges. The simulated pathology, Reinke's edema, is demonstrated in order to explore its influence on the vowel sound. The third part focuses on modeling of phonation in a spatial computational model. All Czech vowels are simulated also here and compared to the planar model and to actual measurement. The spatial model serves as the starting point to modeling of a longitudinal pretension incorporated in the vocal folds. In the last part of the thesis, a modeling of the phonation with vocal folds pretension is investigated. Although the models are tuned to a rather soft phonation, the results are in agreement with the relevant physiologic phenomena. While the spatial model is highly computationally expensive, a hybrid planar model with pretension is proposed. A special attention is paid to the analysis of self-sustained oscillation of the vocal folds. It is shown, the planar model cannot reproduce such kind of oscillation in the actual version, albeit time of oscillation was considerably extended. On the other hand, oscillation of the spatial vocal folds are stabilized without effects accompanying subduing of oscillation. It can be supposed that the spatial model is able to reproduce self-sustained oscillation as a basic principle present during the human phonation.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.