National Repository of Grey Literature 6 records found  Search took 0.00 seconds. 
Reflect-array with electronic beam steering
Bílek, Ondřej ; Závodný,, Vadim (referee) ; Raida, Zbyněk (advisor)
The diploma thesis is aimed to design, optimize, produce and subsequently measure the properties of the reflector with the electronic steering direction for the frequency of the 24,125 GHz band ISM. The problem chosen is solved by a group of voltage-controlled varicaps. The reflector consists of a matrix of two rows, each containing 3 cells. The reflector was designed by full-wave software CST Microwave Studio 2015.
Design of 3D Vivaldi antenna array for radar applications
Kašpar, Petr ; Pitra,, Kamil (referee) ; Puskely, Jan (advisor)
This master thesis deals with a design of Vivaldi antenna due to its broadband properties suitable for radar applications. The folding of single Vivaldi antenna element into 2D antenna array we achieved required radiation properties. Appropriate design of feeding structure realized by SIW technology we obtained suppression of side lobes and deflection of the main lobe. The work also includes design of 3D Vivaldi antenna array. Modeling, simulation and optimization of antenna array were performed in CST Microwave Studio.
Terahertz Antenna Arrays for Communications
Warmowska, Dominika ; Joler, Miroslav (referee) ; Pokorný, Michal (referee) ; Raida, Zbyněk (advisor)
The thesis is focused on the research of THz antenna arrays to be used for communications. Attention is turned to modeling metallic surfaces at THz frequencies, a proper characterization of gold conductivity, its relation to Drude model and corresponding measurements. Moreover, the best methods for modeling thin metallic layers (depending on the skin depth related to the metal thickness) are presented. An optimized element of a THz 2×2 antenna array designed for the application of communications is developed in a way that enables an expansion to a larger array. The expansion ability is demonstrated on a 4×4 antenna array which is presented in the thesis too. The designed antennas achieve parameters better than the state-of-art antennas. The presented antennas radiate circularly polarized wave at THz frequencies, operate in a wide bandwidth, have a high gain and are of a compact size. In the thesis, an 8×8 antenna array with a beam steering capability is presented. The main beam of the antenna array can be controlled in two dimensions. A high gain of the radiated circularly-polarized wave can be achieved that way. Different approaches to modeling antennas with thin metallic layers are compared and the best methods are recommended from the viewpoint of different requirements. The designed 2×2 and 4×4 antenna arrays are manufactured using a microfabrication technology. Each step of the fabrication is described in detail and discussed. The reflection coefficient at the input of antennas is measured and compared with simulations. Discrepancies in results are associated with surface roughness which is analyzed by a scanning probe microscope and a scanning electron microscope. By down-scaling the developed THz antenna, a low-profile high-gain antenna for Ka-band space applications is designed. The presented antenna achieves better results than state-of-art CubeSat antennas. The antenna performance is verified by a prototype to be operated at 9 GHz, and the radiation characteristics are experimentally confirmed.
Terahertz Antenna Arrays for Communications
Warmowska, Dominika ; Joler, Miroslav (referee) ; Pokorný, Michal (referee) ; Raida, Zbyněk (advisor)
The thesis is focused on the research of THz antenna arrays to be used for communications. Attention is turned to modeling metallic surfaces at THz frequencies, a proper characterization of gold conductivity, its relation to Drude model and corresponding measurements. Moreover, the best methods for modeling thin metallic layers (depending on the skin depth related to the metal thickness) are presented. An optimized element of a THz 2×2 antenna array designed for the application of communications is developed in a way that enables an expansion to a larger array. The expansion ability is demonstrated on a 4×4 antenna array which is presented in the thesis too. The designed antennas achieve parameters better than the state-of-art antennas. The presented antennas radiate circularly polarized wave at THz frequencies, operate in a wide bandwidth, have a high gain and are of a compact size. In the thesis, an 8×8 antenna array with a beam steering capability is presented. The main beam of the antenna array can be controlled in two dimensions. A high gain of the radiated circularly-polarized wave can be achieved that way. Different approaches to modeling antennas with thin metallic layers are compared and the best methods are recommended from the viewpoint of different requirements. The designed 2×2 and 4×4 antenna arrays are manufactured using a microfabrication technology. Each step of the fabrication is described in detail and discussed. The reflection coefficient at the input of antennas is measured and compared with simulations. Discrepancies in results are associated with surface roughness which is analyzed by a scanning probe microscope and a scanning electron microscope. By down-scaling the developed THz antenna, a low-profile high-gain antenna for Ka-band space applications is designed. The presented antenna achieves better results than state-of-art CubeSat antennas. The antenna performance is verified by a prototype to be operated at 9 GHz, and the radiation characteristics are experimentally confirmed.
Reflect-array with electronic beam steering
Bílek, Ondřej ; Závodný,, Vadim (referee) ; Raida, Zbyněk (advisor)
The diploma thesis is aimed to design, optimize, produce and subsequently measure the properties of the reflector with the electronic steering direction for the frequency of the 24,125 GHz band ISM. The problem chosen is solved by a group of voltage-controlled varicaps. The reflector consists of a matrix of two rows, each containing 3 cells. The reflector was designed by full-wave software CST Microwave Studio 2015.
Design of 3D Vivaldi antenna array for radar applications
Kašpar, Petr ; Pitra,, Kamil (referee) ; Puskely, Jan (advisor)
This master thesis deals with a design of Vivaldi antenna due to its broadband properties suitable for radar applications. The folding of single Vivaldi antenna element into 2D antenna array we achieved required radiation properties. Appropriate design of feeding structure realized by SIW technology we obtained suppression of side lobes and deflection of the main lobe. The work also includes design of 3D Vivaldi antenna array. Modeling, simulation and optimization of antenna array were performed in CST Microwave Studio.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.