National Repository of Grey Literature 6 records found  Search took 0.00 seconds. 
The analysis of plasticity of cancer cell invasiveness
Merta, Ladislav
The ability of cancer cells to adopt various invasive modes (the plasticity of cancer cell invasiveness) represents a significant obstacle in the treatment of cancer metastasis. Cancer invasiveness involves various modes of migration. Cells can move together (with the preserved intercellular junctions; collective invasiveness) or individually. Within individual invasiveness, we distinguish two principal invasive modes - mesenchymal and amoeboid. The mesenchymal mode of migration is characterized by an elongated shape, proteolytic degradation of the fibres of the extracellular matrix, and the formation of strong contacts with the extracellular matrix. The amoeboid mode of migration is not dependent on proteolytic activity, the cells are characterized by a round shape and increased contractility, which they use to squeeze themselves through the pores of the extracellular matrix. This thesis deals with the analysis of the plasticity of cancer cell invasiveness, specifically the transitions between individual amoeboid and mesenchymal migration modes, in the 3D environment of the collagen gel as a model of extracellular matrix. The work presents models of mesenchymal-to-amoeboid transition (MAT), which include BLM, HT1080 and MDA-MB-231 cell lines, in which MAT is induced by the expression of...
Molecular mechanisms of fibroblastoid cell phenotype transitions:dedifferentiation of myofibroblasts and influencing of invasiveness and metastasis of sarcoma
Kosla, Jan
Fibroblasts are the principal cellular component of the connective tissue. They are a heterogeneous group of cells which contribute to the structure of connective tissue and wound healing by their ability to produce extracellular matrix (ECM). Fibroblasts and cells derived from them are involved in many pathological processes such as formation of malignant tumors and fibrosis. Tumor progression which finally leads to metastasis is a serious biomedical problem. There is a growing body of the recent evidence showing an important role of the tumor stroma and its interaction with cancer cells in cancer progression. Tumor stroma comprises mainly of myofibroblasts and their products, namely ECM, soluble factors, and enzymes. Myofibroblasts contribute more or less to all steps of cancer progression. Furthermore myofibroblasts play a key role in fibrosis, another serious human disease which is not efficiently treatable and which is associated with cancer progression. These facts made us to search for molecular means capable of eliminating the myofibroblastic phenotype. We succeeded to entirely dedifferentiate primary myofibroblasts by concomitant inhibition of TGFβ signaling and perturbation of MAPK signaling in a chick model that we have introduced. Malignant fibroblasts form sarcomas. ECM is the first...
The analysis of plasticity of cancer cell invasiveness
Merta, Ladislav
The ability of cancer cells to adopt various invasive modes (the plasticity of cancer cell invasiveness) represents a significant obstacle in the treatment of cancer metastasis. Cancer invasiveness involves various modes of migration. Cells can move together (with the preserved intercellular junctions; collective invasiveness) or individually. Within individual invasiveness, we distinguish two principal invasive modes - mesenchymal and amoeboid. The mesenchymal mode of migration is characterized by an elongated shape, proteolytic degradation of the fibres of the extracellular matrix, and the formation of strong contacts with the extracellular matrix. The amoeboid mode of migration is not dependent on proteolytic activity, the cells are characterized by a round shape and increased contractility, which they use to squeeze themselves through the pores of the extracellular matrix. This thesis deals with the analysis of the plasticity of cancer cell invasiveness, specifically the transitions between individual amoeboid and mesenchymal migration modes, in the 3D environment of the collagen gel as a model of extracellular matrix. The work presents models of mesenchymal-to-amoeboid transition (MAT), which include BLM, HT1080 and MDA-MB-231 cell lines, in which MAT is induced by the expression of...
The analysis of plasticity of cancer cell invasiveness
Merta, Ladislav ; Brábek, Jan (advisor) ; Šindelka, Radek (referee) ; Staněk, David (referee)
The ability of cancer cells to adopt various invasive modes (the plasticity of cancer cell invasiveness) represents a significant obstacle in the treatment of cancer metastasis. Cancer invasiveness involves various modes of migration. Cells can move together (with the preserved intercellular junctions; collective invasiveness) or individually. Within individual invasiveness, we distinguish two principal invasive modes - mesenchymal and amoeboid. The mesenchymal mode of migration is characterized by an elongated shape, proteolytic degradation of the fibres of the extracellular matrix, and the formation of strong contacts with the extracellular matrix. The amoeboid mode of migration is not dependent on proteolytic activity, the cells are characterized by a round shape and increased contractility, which they use to squeeze themselves through the pores of the extracellular matrix. This thesis deals with the analysis of the plasticity of cancer cell invasiveness, specifically the transitions between individual amoeboid and mesenchymal migration modes, in the 3D environment of the collagen gel as a model of extracellular matrix. The work presents models of mesenchymal-to-amoeboid transition (MAT), which include BLM, HT1080 and MDA-MB-231 cell lines, in which MAT is induced by the expression of...
Molecular mechanisms of fibroblastoid cell phenotype transitions:dedifferentiation of myofibroblasts and influencing of invasiveness and metastasis of sarcoma
Kosla, Jan
Fibroblasts are the principal cellular component of the connective tissue. They are a heterogeneous group of cells which contribute to the structure of connective tissue and wound healing by their ability to produce extracellular matrix (ECM). Fibroblasts and cells derived from them are involved in many pathological processes such as formation of malignant tumors and fibrosis. Tumor progression which finally leads to metastasis is a serious biomedical problem. There is a growing body of the recent evidence showing an important role of the tumor stroma and its interaction with cancer cells in cancer progression. Tumor stroma comprises mainly of myofibroblasts and their products, namely ECM, soluble factors, and enzymes. Myofibroblasts contribute more or less to all steps of cancer progression. Furthermore myofibroblasts play a key role in fibrosis, another serious human disease which is not efficiently treatable and which is associated with cancer progression. These facts made us to search for molecular means capable of eliminating the myofibroblastic phenotype. We succeeded to entirely dedifferentiate primary myofibroblasts by concomitant inhibition of TGFβ signaling and perturbation of MAPK signaling in a chick model that we have introduced. Malignant fibroblasts form sarcomas. ECM is the first...
Molecular mechanisms of fibroblastoid cell phenotype transitions:dedifferentiation of myofibroblasts and influencing of invasiveness and metastasis of sarcoma
Kosla, Jan ; Dvořák, Michal (advisor) ; Peková, Soňa (referee) ; Reiniš, Milan (referee)
Fibroblasts are the principal cellular component of the connective tissue. They are a heterogeneous group of cells which contribute to the structure of connective tissue and wound healing by their ability to produce extracellular matrix (ECM). Fibroblasts and cells derived from them are involved in many pathological processes such as formation of malignant tumors and fibrosis. Tumor progression which finally leads to metastasis is a serious biomedical problem. There is a growing body of the recent evidence showing an important role of the tumor stroma and its interaction with cancer cells in cancer progression. Tumor stroma comprises mainly of myofibroblasts and their products, namely ECM, soluble factors, and enzymes. Myofibroblasts contribute more or less to all steps of cancer progression. Furthermore myofibroblasts play a key role in fibrosis, another serious human disease which is not efficiently treatable and which is associated with cancer progression. These facts made us to search for molecular means capable of eliminating the myofibroblastic phenotype. We succeeded to entirely dedifferentiate primary myofibroblasts by concomitant inhibition of TGFβ signaling and perturbation of MAPK signaling in a chick model that we have introduced. Malignant fibroblasts form sarcomas. ECM is the first...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.