National Repository of Grey Literature 7 records found  Search took 0.01 seconds. 
Advanced Analytical Model of Strength in Quasibrittle Media
Kučera, Michal ; Vořechovský, Miroslav
The purpose of this work is to extend the use of a recently developed analytical model of concrete fracture behavior to general load cases. The model reflects the stress redistribution processes in the fracture process zone by averaging the local material strength. Analytically, the probability that the spatial stress field attains the averaged strength field is obtained, resulting in a full probability density function of random structural strength, which naturally captures all sources of structural size effect. The expanded version of this model can be used in various general load cases.
Multi-filament yarns testing for textile-reinforced concrete
Kaděrová, Jana ; Seitl,, Stanislav (referee) ; Vořechovský, Miroslav (advisor)
The scope of the presented master thesis was the experimental study of multi-filament yarns made of AR-glass and used for textile-reinforced concrete. The behavior under the tensile loading was investigated by laboratory tests. A high number of yarn specimens (over 300) of six different lengths (from 1 cm to 74 cm) was tested to obtain statistically significant data which were subsequently corrected and statistically processed. The numerical model of the multi-filament bundle was studied and applied for prediction of the yarn performance and for later results interpretation. The model of n parallel filaments describes the behavior of a bundle with varying parameters representing different sources of disorder of the response and provides the qualitative information about the influence of their randomization on the overall bundle response. The aim of the carried experiment was to validate the model presumptions and to identify the model parameters to fit the real load-displacement curves. Unfortunately, due to unsuccessful correction of measured displacements devalued by additional non-linear contribution of the unstiff experiment device the load-displacement diagrams were not applicable to model parameters identification. The statistical evaluation was carried only for the maximal load values and the effect of the specimen size (length) on its strength was demonstrated. The size effect curve did not exclude the existence of spatial correlation of material mechanical properties modifying the classical statistical Weibull theory.
Reliability analysis of the hip joint endoprosthesis ceramic head
Málek, Michal ; Janíček, Přemysl (referee) ; Fuis, Vladimír (advisor)
This diploma thesis deals with probability of fracture ceramic head of total hip endoprosthesis during tests by the standard ISO 7206-5. In the first part is made stress analysis with method of finite elements in program ANSYS. Six types of ceramic head with different geometry was analysed for ideal geometry of head and shaft, and also for shape imperfections from nominal conical shaft and head. The final values of principal stress from stress analysis were entry values for the second part – probability of fracture analysis. Weibull weakest-link theory was applied, namely 3-Parameter and 2-Parameter Weibull distribution.
Probabilistic model for textile concrete reinforcement and comparison with experiments
Lomič, Jiří ; Rypl, Rostislav (referee) ; Vořechovský, Miroslav (advisor)
The scope of the presented bachelor’s thesis was the establishment of a probabilistic model for material strength of textile reinforcement used for textile reinforced concrete. This reinforcement is composed of AR-glass multi-filament yarns. The goal of this thesis was to determine the potential weak spot of the textile yarn and evaluate its strength in overall. The weak spot could have been a lateral cross-connection, which narrowed the textile yarn at several locations. Another thing of interest was the observation of statistical size effect with the increasing length of textile yarn. In order to properly fit the numerical model to real behavior of multi-filament yarns, five series of experimental tensile testing has been executed in laboratory. Each series consisted of 8-10 specimens and had a different yarn length. Maximum tensile force and maximum deformation have been measured to obtain L-D diagrams for each specimen. Measured data were statistically analyzed and gave the information necessary for the identification of probabilistic model parameters. This parameter estimation has been carried out with the help of numerical and optimization methods included in Python programming algorithms. The problem statement resulted in a combination of model parameters describing the textile yarn behavior. The statistical size effect was observed corresponding to the Weibull theory. The performed study showed that the failure of the textile yarn depends on material strength of its filaments. There are no load concentrators at the location of lateral cross-connections affecting the yarn failure.
Reliability analysis of the hip joint endoprosthesis ceramic head
Málek, Michal ; Janíček, Přemysl (referee) ; Fuis, Vladimír (advisor)
This diploma thesis deals with probability of fracture ceramic head of total hip endoprosthesis during tests by the standard ISO 7206-5. In the first part is made stress analysis with method of finite elements in program ANSYS. Six types of ceramic head with different geometry was analysed for ideal geometry of head and shaft, and also for shape imperfections from nominal conical shaft and head. The final values of principal stress from stress analysis were entry values for the second part – probability of fracture analysis. Weibull weakest-link theory was applied, namely 3-Parameter and 2-Parameter Weibull distribution.
Multi-filament yarns testing for textile-reinforced concrete
Kaděrová, Jana ; Seitl,, Stanislav (referee) ; Vořechovský, Miroslav (advisor)
The scope of the presented master thesis was the experimental study of multi-filament yarns made of AR-glass and used for textile-reinforced concrete. The behavior under the tensile loading was investigated by laboratory tests. A high number of yarn specimens (over 300) of six different lengths (from 1 cm to 74 cm) was tested to obtain statistically significant data which were subsequently corrected and statistically processed. The numerical model of the multi-filament bundle was studied and applied for prediction of the yarn performance and for later results interpretation. The model of n parallel filaments describes the behavior of a bundle with varying parameters representing different sources of disorder of the response and provides the qualitative information about the influence of their randomization on the overall bundle response. The aim of the carried experiment was to validate the model presumptions and to identify the model parameters to fit the real load-displacement curves. Unfortunately, due to unsuccessful correction of measured displacements devalued by additional non-linear contribution of the unstiff experiment device the load-displacement diagrams were not applicable to model parameters identification. The statistical evaluation was carried only for the maximal load values and the effect of the specimen size (length) on its strength was demonstrated. The size effect curve did not exclude the existence of spatial correlation of material mechanical properties modifying the classical statistical Weibull theory.
Probabilistic model for textile concrete reinforcement and comparison with experiments
Lomič, Jiří ; Rypl, Rostislav (referee) ; Vořechovský, Miroslav (advisor)
The scope of the presented bachelor’s thesis was the establishment of a probabilistic model for material strength of textile reinforcement used for textile reinforced concrete. This reinforcement is composed of AR-glass multi-filament yarns. The goal of this thesis was to determine the potential weak spot of the textile yarn and evaluate its strength in overall. The weak spot could have been a lateral cross-connection, which narrowed the textile yarn at several locations. Another thing of interest was the observation of statistical size effect with the increasing length of textile yarn. In order to properly fit the numerical model to real behavior of multi-filament yarns, five series of experimental tensile testing has been executed in laboratory. Each series consisted of 8-10 specimens and had a different yarn length. Maximum tensile force and maximum deformation have been measured to obtain L-D diagrams for each specimen. Measured data were statistically analyzed and gave the information necessary for the identification of probabilistic model parameters. This parameter estimation has been carried out with the help of numerical and optimization methods included in Python programming algorithms. The problem statement resulted in a combination of model parameters describing the textile yarn behavior. The statistical size effect was observed corresponding to the Weibull theory. The performed study showed that the failure of the textile yarn depends on material strength of its filaments. There are no load concentrators at the location of lateral cross-connections affecting the yarn failure.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.