National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Design of a sample holder with electrical contacts for UHV SEM/SPM
Krutil, Vojtěch ; Vlček, Ivan (referee) ; Urban, Pavel (advisor)
The presented thesis focuses on designing a sample holder for an UHV SEM/SPM microscope suitable for using in low temperature (20 K - 300 K) applications. This newly designed sample holder is equipped with ten spring-loaded contacts for electrical connection of a transport pallet to the sample holder, which will be equipped with a temperature sensor and a heating element. Two quadruples of contacts are reserved for the sample and the temperature sensor and the remaining pair for the heating element. A thorough research study of commercially available sample holders indicates that the holders for the intended use are not available on the market. In the low-temperature tests of the newly designed sample holder, the limit temperature of the 24 K was reached in a test vacuum chamber with a flow cooling system. The ambient temperature was 300 K. The contact function was successfully verified by measuring the transient electrical resistance at the fixed and the spring contact sections. Additionally, a modification of the sample holder for high temperature (300 K - 700 K) was suggested.
Design of a sample holder with electrical contacts for UHV SEM/SPM
Krutil, Vojtěch ; Vlček, Ivan (referee) ; Urban, Pavel (advisor)
The presented thesis focuses on designing a sample holder for an UHV SEM/SPM microscope suitable for using in low temperature (20 K - 300 K) applications. This newly designed sample holder is equipped with ten spring-loaded contacts for electrical connection of a transport pallet to the sample holder, which will be equipped with a temperature sensor and a heating element. Two quadruples of contacts are reserved for the sample and the temperature sensor and the remaining pair for the heating element. A thorough research study of commercially available sample holders indicates that the holders for the intended use are not available on the market. In the low-temperature tests of the newly designed sample holder, the limit temperature of the 24 K was reached in a test vacuum chamber with a flow cooling system. The ambient temperature was 300 K. The contact function was successfully verified by measuring the transient electrical resistance at the fixed and the spring contact sections. Additionally, a modification of the sample holder for high temperature (300 K - 700 K) was suggested.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.