National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Basic features of aggregate-matrix-interface fracture of concrete: pilot modelling
Vyhlídal, M. ; Šimonová, H. ; Veselý, V. ; Keršner, Z. ; Klusák, Jan ; Malíková, Lucie
In this paper, the attention is paid to investigation of the importance of the Interfacial Transition Zone (ITZ) in concrete for the global fracture behaviour. A simplified cracked geometry (consisting matrix, ITZ and aggregate) is modelled by means of the finite element method with a crack terminating at the matrix-ITZ interface. Numerical studies assuming two various ITZ thicknesses and several various ITZ elastic moduli are performed. Based on the values of the opening stress ahead of the crack tip (its average value and stress range) a few conclusions are discussed. The pilot analyses dealing with the effect of ITZ on the stress distribution should contribute to better description of toughening mechanisms in silicate-based composites.
Quantification of increasing fracture toughness of glass matrix reinforced by alumina platelets composite
Kotoul, M. ; Pokluda, J. ; Šandera, P. ; Dlouhý, Ivo ; Chlup, Zdeněk ; Boccaccini, A. R.
A borosilicate glass matrix composite containing alumina platelets was considered to investigate toughening mechanisms and crack tip behaviour in dispersion reinforced brittle matrix composites. Fracture toughness was determined applying the chevron notched specimen technique and fractographic analysis was employed to reveal the active toughening mechanisms with increasing content of reinforcement. A roughness-induced shielding effect has been quantified to prove the relation between fracture toughness and fracture surface roughness. Theoretical calculations of the fracture toughness enhancement based on a modified crack deflection model developed by Faber and Evans, combined with the influence of the increase in Young’s modulus, were found to be in good agreement with experimental data. The crack deflection model was further extended to capture a synergy between crack deflection and the contribution of residual stresses to toughening in the investigated composites.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.