National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Computational modelling of high-frequency noise inside cabin of aircraft EV-55M
Straka, Martin ; Pellant, Karel (referee) ; Švancara, Pavel (advisor)
This thesis describes methods of high frequency noise and vibrations computation of cabin part of EV–55M (aircraft developed by Evektor Kunovice). There is a brief summary of methods used for determining high frequency noise and vibrations in the first part of the thesis. Detailed explanation is given for Statistical Energy Analysis (SEA) which is nowadays the most dominant method in this area. The energy balance equation is derived in this chapter and SEA parameters such as modal density, damping loss factor, coupling loss factor and power input are introduced here. Next part deals with main noise sources of propeller driven and jet aircraft and passive and active noise controls are discussed. Practical part of this thesis deals with modeling aircraft EV–55M fuselage using VA One SEA module. Two models were created. First of them is only an outside fuselage with aircraft flooring and the second one is extended by interior trim panels and is applicable for simulation of noise control treatments. Computational modeling is accompanied by experimental measurement of passive noise control material characteristics. Postprocessing of information obtained from impedance tube measurement was performed in FOAM – X. Determined characteristics of porous material were used as inputs to VA One and reduction of sound pressure level in fuselage cavities by using noise control treatment was found. In conclusion there is a summary of noise transmission paths from sources to interior cavity and some treatments of them are simulated
Computational modelling of high-frequency noise inside cabin of aircraft EV-55M
Straka, Martin ; Pellant, Karel (referee) ; Švancara, Pavel (advisor)
This thesis describes methods of high frequency noise and vibrations computation of cabin part of EV–55M (aircraft developed by Evektor Kunovice). There is a brief summary of methods used for determining high frequency noise and vibrations in the first part of the thesis. Detailed explanation is given for Statistical Energy Analysis (SEA) which is nowadays the most dominant method in this area. The energy balance equation is derived in this chapter and SEA parameters such as modal density, damping loss factor, coupling loss factor and power input are introduced here. Next part deals with main noise sources of propeller driven and jet aircraft and passive and active noise controls are discussed. Practical part of this thesis deals with modeling aircraft EV–55M fuselage using VA One SEA module. Two models were created. First of them is only an outside fuselage with aircraft flooring and the second one is extended by interior trim panels and is applicable for simulation of noise control treatments. Computational modeling is accompanied by experimental measurement of passive noise control material characteristics. Postprocessing of information obtained from impedance tube measurement was performed in FOAM – X. Determined characteristics of porous material were used as inputs to VA One and reduction of sound pressure level in fuselage cavities by using noise control treatment was found. In conclusion there is a summary of noise transmission paths from sources to interior cavity and some treatments of them are simulated

Interested in being notified about new results for this query?
Subscribe to the RSS feed.