National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Development and differentiation of different types of yeast colonies: Regulation of metabolic diversification and development of cells with novel properties
Maršíková, Jana
Yeasts are unicellular organisms, but on a solid substrate they are capable of forming complex organized structures that behave like primitive multicellular organisms. Examples of these structures include colonies and biofilms, whose cells interact with each other, coordinate their growth and development, differentiate spatially and form specialized cell subpopulations in which specific processes and regulatory pathways occur. The basis of cellular differentiation and specialization is the formation of gradients of nutrients, metabolites and signaling molecules. Thus, multicellular yeast communities differ significantly from planktonic populations in their characteristics. The aim of this work is to increase knowledge related to the development and differentiation of both smooth and structured colonies of the yeast Saccharomyces cerevisiae. The literature introduction of the thesis provides an overview of the current knowledge on the development of yeast colonies and biofilms, especially of S. cerevisiae species, and also includes selected regulations important for the formation of multicellular populations. The thesis provides insights into the antagonistic function of the transcriptional regulators Cyc8p and Tup1p in the development of structured biofilm colonies. Genome-wide transcriptomic...
Development and differentiation of different types of yeast colonies: Regulation of metabolic diversification and development of cells with novel properties
Maršíková, Jana ; Palková, Zdena (advisor) ; Heidingsfeld, Olga (referee) ; Demnerová, Kateřina (referee)
Yeasts are unicellular organisms, but on a solid substrate they are capable of forming complex organized structures that behave like primitive multicellular organisms. Examples of these structures include colonies and biofilms, whose cells interact with each other, coordinate their growth and development, differentiate spatially and form specialized cell subpopulations in which specific processes and regulatory pathways occur. The basis of cellular differentiation and specialization is the formation of gradients of nutrients, metabolites and signaling molecules. Thus, multicellular yeast communities differ significantly from planktonic populations in their characteristics. The aim of this work is to increase knowledge related to the development and differentiation of both smooth and structured colonies of the yeast Saccharomyces cerevisiae. The literature introduction of the thesis provides an overview of the current knowledge on the development of yeast colonies and biofilms, especially of S. cerevisiae species, and also includes selected regulations important for the formation of multicellular populations. The thesis provides insights into the antagonistic function of the transcriptional regulators Cyc8p and Tup1p in the development of structured biofilm colonies. Genome-wide transcriptomic...
Differentiation of yeast colonies: The role of selected transcription factors and metabolic proteins
Plocek, Vítězslav
5 Abstract Although yeasts are unicellular microorganisms, they form complex multicellular formations such as biofilms and colonies under natural conditions. Within these structures, processes such as cell differentiation, specialization by particular cell populations and cell signalling, which are typical of multicellular organisms, take place. The literature introduction to this thesis summarizes current knowledge regarding the development of biofilms and colonies, in particular those of the model organism, Saccharomyces cerevisiae, and some selected regulations that are important for the formation of multicellular structures. In the results section, I focus on two lines of research. The first is directed towards mechanisms, involved in the formation of multicellular structures. In studying the formation of SLI biofilms (biofilms at the solid/liquid interface), we have documented the antagonistic role of the regulators CYC8 and TUP1 in their formation and have also described the effect of the presence of glucose on the development and stability of SLI biofilms of strain BR-F. During this study we[D1] have developed an imaging method that allows us to prepare and observe the internal structure (vertical cross-section) of SLI biofilms, as well as the growth of unattached cells, under physiological...
Differentiation of yeast colonies: The role of selected transcription factors and metabolic proteins
Plocek, Vítězslav ; Palková, Zdena (advisor) ; Heidingsfeld, Olga (referee) ; Sychrová, Hana (referee)
5 Abstract Although yeasts are unicellular microorganisms, they form complex multicellular formations such as biofilms and colonies under natural conditions. Within these structures, processes such as cell differentiation, specialization by particular cell populations and cell signalling, which are typical of multicellular organisms, take place. The literature introduction to this thesis summarizes current knowledge regarding the development of biofilms and colonies, in particular those of the model organism, Saccharomyces cerevisiae, and some selected regulations that are important for the formation of multicellular structures. In the results section, I focus on two lines of research. The first is directed towards mechanisms, involved in the formation of multicellular structures. In studying the formation of SLI biofilms (biofilms at the solid/liquid interface), we have documented the antagonistic role of the regulators CYC8 and TUP1 in their formation and have also described the effect of the presence of glucose on the development and stability of SLI biofilms of strain BR-F. During this study we[D1] have developed an imaging method that allows us to prepare and observe the internal structure (vertical cross-section) of SLI biofilms, as well as the growth of unattached cells, under physiological...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.