National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Study of heat transport throw bulk materials with electric conductive aditive
Vacula, Jan ; Menčík, Přemysl (referee) ; Zmeškal, Oldřich (advisor)
Bachelor thesis is focused on the study of heat transport in bulk materials made from PLA (polylactic acid) filaments by 3D printing. For subsequent applications it is important to know the electrical, dielectric and thermal parameters of materials with different dyes, pigments and electrically conductive additives. The aim of this work is mainly to study the thermal properties of the series and the influence of additives on these properties. The main focus is to study the thermal properties of the samples. In the theoretical part, different 3D printing methods are mentioned, the methods of measuring the thermal properties, and finally the properties of the lactic acid polymer are described. The experimental part is devoted to the description of the process of 3D printing samples for measurements and then the method of measuring the thermal properties of the printed samples is described. For samples with electrically conductive admixtures, the thermal conductivity was found to be in the range of (0,217–0,292) W/m/K and the specific heat capacity was found to be (382,2–1 007,2) J/kg/K. The electrically conductive materials (PLA with metallic admixtures) were found to have a very good thermal conductivity and a smaller specific heat capacity, while the materials with admixtures of dyes and pigments showed a smaller thermal conductivity and a larger specific heat capacity.
Study of heat transport throw bulk materials with electric conductive aditive
Vacula, Jan ; Menčík, Přemysl (referee) ; Zmeškal, Oldřich (advisor)
Bachelor thesis is focused on the study of heat transport in bulk materials made from PLA (polylactic acid) filaments by 3D printing. For subsequent applications it is important to know the electrical, dielectric and thermal parameters of materials with different dyes, pigments and electrically conductive additives. The aim of this work is mainly to study the thermal properties of the series and the influence of additives on these properties. The main focus is to study the thermal properties of the samples. In the theoretical part, different 3D printing methods are mentioned, the methods of measuring the thermal properties, and finally the properties of the lactic acid polymer are described. The experimental part is devoted to the description of the process of 3D printing samples for measurements and then the method of measuring the thermal properties of the printed samples is described. For samples with electrically conductive admixtures, the thermal conductivity was found to be in the range of (0,217–0,292) W/m/K and the specific heat capacity was found to be (382,2–1 007,2) J/kg/K. The electrically conductive materials (PLA with metallic admixtures) were found to have a very good thermal conductivity and a smaller specific heat capacity, while the materials with admixtures of dyes and pigments showed a smaller thermal conductivity and a larger specific heat capacity.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.