National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Typing Using Brain Signals
Wagner, Lukáš ; Malinka, Kamil (referee) ; Tinka, Jan (advisor)
This bachelor thesis focusses on the implementation of a brain-computer interface, programmed in Python language, that would enable to communicate using EEG. The thesis investigates and evaluates existing brain-computer interface technologies for this purpose. The thesis also explores the use of machine learning applied to the technology, in particular neural networks,   which have proven to be one of the most accurate methods of EEG signal processing. Following that, 3 different systems are proposed and implemented, each on different paradigm of visually evoking EEG potential changes. These systems were tested with different signal classification approaches. Unfortunately, none of the systems proved to be useful in communication.
Person Identification and Verification Using EEG
Žitný, Roland ; Orság, Filip (referee) ; Tinka, Jan (advisor)
The aim of this work was to create a brain-computer interface that reliably identifies and verifies a person using his electroencephalographic signals. Creating a user profile and verifying it is based on processing reactions to his own face, and the face of strangers or acquaintances. Algorithms such as bandpass and noise removal using wavelet transformation are user to filter signals. The classification of reactions is performed using a convolutional neural network or linear discriminant analysis. The average accuracy of the linear discriminant analysis is 66.2 % and of the convolutional neural network is 58.7 %. The maximum achieved accuracy was with linear discriminant analysis and at 93.7 %.
Typing Using Brain Signals
Wagner, Lukáš ; Malinka, Kamil (referee) ; Tinka, Jan (advisor)
This bachelor thesis focusses on the implementation of a brain-computer interface, programmed in Python language, that would enable to communicate using EEG. The thesis investigates and evaluates existing brain-computer interface technologies for this purpose. The thesis also explores the use of machine learning applied to the technology, in particular neural networks,   which have proven to be one of the most accurate methods of EEG signal processing. Following that, 3 different systems are proposed and implemented, each on different paradigm of visually evoking EEG potential changes. These systems were tested with different signal classification approaches. Unfortunately, none of the systems proved to be useful in communication.
Person Identification and Verification Using EEG
Žitný, Roland ; Orság, Filip (referee) ; Tinka, Jan (advisor)
The aim of this work was to create a brain-computer interface that reliably identifies and verifies a person using his electroencephalographic signals. Creating a user profile and verifying it is based on processing reactions to his own face, and the face of strangers or acquaintances. Algorithms such as bandpass and noise removal using wavelet transformation are user to filter signals. The classification of reactions is performed using a convolutional neural network or linear discriminant analysis. The average accuracy of the linear discriminant analysis is 66.2 % and of the convolutional neural network is 58.7 %. The maximum achieved accuracy was with linear discriminant analysis and at 93.7 %.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.