National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Effective Machining Of Fiber Reinforced Composite Materials
Sedláček, Jan ; Janáč, Alexander (referee) ; Vrba, Vladimír (referee) ; Klement, Josef (referee) ; Humár, Anton (advisor)
The objectives for this dissertation are to push forward the current state of knowledge in the area of machining fiber-reinforced plastic (FRP). The most common machining operation performed on these materials is drilling owing to the need for component assembly in mechanical pieces and structures. Among the defects caused by drilling, delamination appears as to be of the most critical and may occur at both the entrance and exit plane. A number of theoretical and experimental studies have been made to create an analytical model of delamination in composite laminates. In this dissertation, the critical thrust force (force which initiates the delamination) is predicted using linear elastic fracture mechanics - assuming Mode I. Delamination is investigated by studying the evolution of feed force and torque applied by the tool on the workpiece. A four components piezoelectric dynamometer KISTLER 9272 with special PC-software is used for measuring and evaluating of torque and cutting forces, when drilling two different composite materials: carbon/epoxy laminate fabricated by hand lay-up technique and glass/polyester composite made by pultrusion. Wear mechanisms and location of the wear on the tool are also investigated (with respect to cutting material). The tool wear is measured with help of a common workshop microscope and recorded with scanning electron microscope PHILIPS XL30. Drilling experiments are performed to give complex technical information (i.e. cutting conditions, tool geometry, tool wear and so on) which enables efficient machining of composite materials. Delamination-free drilling is given special emphasis in the experiments. Methods of statistical analysis (DOE) are used to determine which factors have the most influence on delamination.
Effective Machining Of Fiber Reinforced Composite Materials
Sedláček, Jan ; Janáč, Alexander (referee) ; Vrba, Vladimír (referee) ; Klement, Josef (referee) ; Humár, Anton (advisor)
The objectives for this dissertation are to push forward the current state of knowledge in the area of machining fiber-reinforced plastic (FRP). The most common machining operation performed on these materials is drilling owing to the need for component assembly in mechanical pieces and structures. Among the defects caused by drilling, delamination appears as to be of the most critical and may occur at both the entrance and exit plane. A number of theoretical and experimental studies have been made to create an analytical model of delamination in composite laminates. In this dissertation, the critical thrust force (force which initiates the delamination) is predicted using linear elastic fracture mechanics - assuming Mode I. Delamination is investigated by studying the evolution of feed force and torque applied by the tool on the workpiece. A four components piezoelectric dynamometer KISTLER 9272 with special PC-software is used for measuring and evaluating of torque and cutting forces, when drilling two different composite materials: carbon/epoxy laminate fabricated by hand lay-up technique and glass/polyester composite made by pultrusion. Wear mechanisms and location of the wear on the tool are also investigated (with respect to cutting material). The tool wear is measured with help of a common workshop microscope and recorded with scanning electron microscope PHILIPS XL30. Drilling experiments are performed to give complex technical information (i.e. cutting conditions, tool geometry, tool wear and so on) which enables efficient machining of composite materials. Delamination-free drilling is given special emphasis in the experiments. Methods of statistical analysis (DOE) are used to determine which factors have the most influence on delamination.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.