National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Ultra low noise switching power supply
Raba, Jaroslav ; Leuchter,, Jan (referee) ; Šrámek, Petr (advisor)
This thesis deals with the issue of switching power supply in terms of noise ratios in the output voltage. In the theoretical part analyzes the basic principle of classical and resonant topology switching power converters in terms of output voltage ripple and switching noise. There are also some possibilities of compensation to minimize switching noise and output ripple. The second part describes the custom design a low noise switching power supply, which is composed of an active power factor corrector, power converters and ripple limiter. The main power converter is designed as an LLC resonant converter. The last part deals with the actual construction of the proposed source, its measurement and presentation of the results.
Multiphase Series Parallel LLC resonant converter
Drda, Václav ; Boušek, Jaroslav (referee) ; Semiconductor, Roman Štuler, ON (advisor)
The project deals with the design of a switch-mode power supply (SMPS) with a medium and high power output. The power supply uses multiphase control switching. Electric energy is converted through a series parallel LLC resonant circuit to reach the maximum efficiency with a small size and cost efficiency of the designed power supply. The semiconductor switches use ZVS (Zero Voltage Switching) on the primary side and ZCS (Zero Current Switching) on the secondary side of the converter. The design of the converter is based on the knowledge of the high power output converters (types of switching, art topologies) and resonant topologies (series resonant circuit – SRC, parallel resonant circuit – PRC and series parallel circuit –SPRC). The design of the converter was done theoreticaly and tested by using simulation program. The simulation and partial tests served to build prototype the Interleaves Converter (ILLC). The function of the converter was tested in laboratory. The laboratory results have been compared with the theoretical and the simulation results.
Ultra low noise switching power supply
Raba, Jaroslav ; Leuchter,, Jan (referee) ; Šrámek, Petr (advisor)
This thesis deals with the issue of switching power supply in terms of noise ratios in the output voltage. In the theoretical part analyzes the basic principle of classical and resonant topology switching power converters in terms of output voltage ripple and switching noise. There are also some possibilities of compensation to minimize switching noise and output ripple. The second part describes the custom design a low noise switching power supply, which is composed of an active power factor corrector, power converters and ripple limiter. The main power converter is designed as an LLC resonant converter. The last part deals with the actual construction of the proposed source, its measurement and presentation of the results.
Multiphase Series Parallel LLC resonant converter
Drda, Václav ; Boušek, Jaroslav (referee) ; Semiconductor, Roman Štuler, ON (advisor)
The project deals with the design of a switch-mode power supply (SMPS) with a medium and high power output. The power supply uses multiphase control switching. Electric energy is converted through a series parallel LLC resonant circuit to reach the maximum efficiency with a small size and cost efficiency of the designed power supply. The semiconductor switches use ZVS (Zero Voltage Switching) on the primary side and ZCS (Zero Current Switching) on the secondary side of the converter. The design of the converter is based on the knowledge of the high power output converters (types of switching, art topologies) and resonant topologies (series resonant circuit – SRC, parallel resonant circuit – PRC and series parallel circuit –SPRC). The design of the converter was done theoreticaly and tested by using simulation program. The simulation and partial tests served to build prototype the Interleaves Converter (ILLC). The function of the converter was tested in laboratory. The laboratory results have been compared with the theoretical and the simulation results.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.