National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Possibilities of three-dimensional imaging in transmitted-light holographic microscope
Sládková, Lucia ; Jákl, Petr (referee) ; Kolman, Pavel (advisor)
Digital holographic microscopy (DHM) is noninvasive method for obtaining images even from samples with low contrast. Nowadays DHM design makes it possible to illuminate sample by broad light source, halogene lamp. Broad light source is displayed in the front focal plane of condensor in such way, that Köhler illumination is achieved. Each point of the source corresponds to a plane wave in image field of objective, which illuminates the whole field of view, but from different direction. Position of the point determines the direction of illumination. In this reason, the microscope enables so reconstruct not only intensity, but also phase of object wave. New designed and constructed interchangeable pinhole aperture modify broad light illumination by rotation around the optical axis. Aperture is placed eccentrically considering the optical axis of microscope. Incidence of light beam on a sample would be under defined angle. After the reconstruction of taken phase images from individual angles of illumination should be possible to obtain three-dimensional structure of the sample.
Possibilities of three-dimensional imaging in transmitted-light holographic microscope
Sládková, Lucia ; Jákl, Petr (referee) ; Kolman, Pavel (advisor)
Digital holographic microscopy (DHM) is noninvasive method for obtaining images even from samples with low contrast. Nowadays DHM design makes it possible to illuminate sample by broad light source, halogene lamp. Broad light source is displayed in the front focal plane of condensor in such way, that Köhler illumination is achieved. Each point of the source corresponds to a plane wave in image field of objective, which illuminates the whole field of view, but from different direction. Position of the point determines the direction of illumination. In this reason, the microscope enables so reconstruct not only intensity, but also phase of object wave. New designed and constructed interchangeable pinhole aperture modify broad light illumination by rotation around the optical axis. Aperture is placed eccentrically considering the optical axis of microscope. Incidence of light beam on a sample would be under defined angle. After the reconstruction of taken phase images from individual angles of illumination should be possible to obtain three-dimensional structure of the sample.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.