National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
High Performance Applications on Intel Xeon Phi Cluster
Kačurik, Tomáš ; Hrbáček, Radek (referee) ; Jaroš, Jiří (advisor)
The main topic of this thesis is the implementation and subsequent optimization of high performance applications on a cluster of Intel Xeon Phi coprocessors. Using two approaches to solve the N-Body problem, the possibilities of the program execution on a cluster of processors, coprocessors or both device types have been demonstrated. Two particular versions of the N-Body problem have been chosen - the naive and Barnes-hut. Both problems have been implemented and optimized. For better comparison of the achieved results, we only considered achieved acceleration against single node runs using processors only. In the case of the naive version a 15-fold increase has been achieved when using combination of processors and coprocessors on 8 computational nodes. The performance in this case was 9 TFLOP/s. Based on the obtained results we concluded the advantages and disadvantages of the program execution in the distributed environments using processors, coprocessors or both.
High Performance Applications on Intel Xeon Phi Cluster
Kačurik, Tomáš ; Hrbáček, Radek (referee) ; Jaroš, Jiří (advisor)
The main topic of this thesis is the implementation and subsequent optimization of high performance applications on a cluster of Intel Xeon Phi coprocessors. Using two approaches to solve the N-Body problem, the possibilities of the program execution on a cluster of processors, coprocessors or both device types have been demonstrated. Two particular versions of the N-Body problem have been chosen - the naive and Barnes-hut. Both problems have been implemented and optimized. For better comparison of the achieved results, we only considered achieved acceleration against single node runs using processors only. In the case of the naive version a 15-fold increase has been achieved when using combination of processors and coprocessors on 8 computational nodes. The performance in this case was 9 TFLOP/s. Based on the obtained results we concluded the advantages and disadvantages of the program execution in the distributed environments using processors, coprocessors or both.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.