National Repository of Grey Literature 4 records found  Search took 0.02 seconds. 
Modelling and analysis of the contact failure of ceramic materials
Machů, Zdeněk ; Majer, Zdeněk (referee) ; Ševeček, Oldřich (advisor)
This bachelor thesis deals with contact damage of ceramic materials. The purpose of this work is to create an analytical and FEM model of contact between a sphere and flat plate and subsequently use these models to analyse loading conditions that lead to crack initiation in the ceramic plate. The research part contains description of contact failures in ceramic materials with strong emphasis on Hertzian cone crack, followed by Hertzian theory of contact between two spheres and Hertzian stress field equations for flat plate. The next part of research chapters describes how contact problems are modelled in FEM software ANSYS Mechanical APDL and introduces the basics of fracture mechanics, which are necessary for the prediction of ring crack initiation. The next chapter contains information about the creation of analytical and FEM model and includes illustrative results of both models, which are then compared between these two models. The last chapter of this work deals with fracture mechanics FEM model that can simulate the ring crack initiation. This chapter also contains analysis of ideal crack position, where the crack has the best conditions for its initiation and growth. The last part of this chapter contains parametrical study where critical loading conditions are analysed in relation to radius of indentation sphere and different mechanical properties of used ceramic plate. In the final part of this work, the results of fracture mechanics FEM model are compared to experimental results of real specimens.
Influence of the residual stresses on the contact failure of ceramic laminates
German, Roman ; Majer, Zdeněk (referee) ; Ševeček, Oldřich (advisor)
The presence of the compressive or tensile thermal residual stresses in layers of a ceramic laminate induced due to different volume change of each layer´s material during the cooling from the sintering temperature can considerably affect resistivity of ceramics against contact damage. Within this work 2D parametric FEM models were created, in order to study the effect of the surface layer thickness, residual stress values and indenting body dimension on the initiation and propagation of the cone crack in the surface layer of the laminate. For the analysis of the critical conditions for the crack initiation, the coupled stress-energy criterion was used and for the determination of the direction of crack propagation we used the maximum tangential stress criterion. The results show that compressive thermal stresses in the surface layer increase the critical force for the crack initiation, shorten the crack distance from the contact area and shorten the occurred crack itself. Moreover, the compressive stresses enlarge the angle of the crack declination during the propagation process which cause an earlier crack arrest. The tensile thermal stresses have exactly the opposite effect. Results of simulations were compared to experimental results but due to lack of available measurements, the verification is partially limited.
Influence of the residual stresses on the contact failure of ceramic laminates
German, Roman ; Majer, Zdeněk (referee) ; Ševeček, Oldřich (advisor)
The presence of the compressive or tensile thermal residual stresses in layers of a ceramic laminate induced due to different volume change of each layer´s material during the cooling from the sintering temperature can considerably affect resistivity of ceramics against contact damage. Within this work 2D parametric FEM models were created, in order to study the effect of the surface layer thickness, residual stress values and indenting body dimension on the initiation and propagation of the cone crack in the surface layer of the laminate. For the analysis of the critical conditions for the crack initiation, the coupled stress-energy criterion was used and for the determination of the direction of crack propagation we used the maximum tangential stress criterion. The results show that compressive thermal stresses in the surface layer increase the critical force for the crack initiation, shorten the crack distance from the contact area and shorten the occurred crack itself. Moreover, the compressive stresses enlarge the angle of the crack declination during the propagation process which cause an earlier crack arrest. The tensile thermal stresses have exactly the opposite effect. Results of simulations were compared to experimental results but due to lack of available measurements, the verification is partially limited.
Modelling and analysis of the contact failure of ceramic materials
Machů, Zdeněk ; Majer, Zdeněk (referee) ; Ševeček, Oldřich (advisor)
This bachelor thesis deals with contact damage of ceramic materials. The purpose of this work is to create an analytical and FEM model of contact between a sphere and flat plate and subsequently use these models to analyse loading conditions that lead to crack initiation in the ceramic plate. The research part contains description of contact failures in ceramic materials with strong emphasis on Hertzian cone crack, followed by Hertzian theory of contact between two spheres and Hertzian stress field equations for flat plate. The next part of research chapters describes how contact problems are modelled in FEM software ANSYS Mechanical APDL and introduces the basics of fracture mechanics, which are necessary for the prediction of ring crack initiation. The next chapter contains information about the creation of analytical and FEM model and includes illustrative results of both models, which are then compared between these two models. The last chapter of this work deals with fracture mechanics FEM model that can simulate the ring crack initiation. This chapter also contains analysis of ideal crack position, where the crack has the best conditions for its initiation and growth. The last part of this chapter contains parametrical study where critical loading conditions are analysed in relation to radius of indentation sphere and different mechanical properties of used ceramic plate. In the final part of this work, the results of fracture mechanics FEM model are compared to experimental results of real specimens.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.