National Repository of Grey Literature 5 records found  Search took 0.02 seconds. 
Determination of Fracture Mechanical Characteristics From Sub-Size Specimens
Stratil, Luděk ; Džugan, Jan (referee) ; Haušild, Petr (referee) ; Dlouhý, Ivo (advisor)
The standards of fracture toughness determination prescribe size requirements for size of test specimens. In cases of limited amount of test material miniature test specimens offer one from the possibilities of fracture toughness evaluation. Because of small loaded volumes in these specimens at the crack tip the loss of constraint occur affecting measured values of fracture toughness. In such cases the size requirements for valid fracture toughness characteristics determination are not fulfilled. These specimens can be even on limits of load range of test devices and handle manipulation by their small dimensions. The important task related to these specimens is, apart from methodology of their preparation and measurement of deformations, the interpretation of measured values of fracture toughness and their possible correction to standard test specimens. Moreover, in the upper shelf region of fracture toughness quantification and interpretation of size effects is still not resolved sufficiently. This thesis is by its aims experimentally computational study focused on evaluation of size effect on fracture toughness in the upper shelf region. The size effect was quantified by testing of miniature and large specimens’ sizes in order to determine J R curves. Two geometries of miniature test specimens, there point bend specimen and CT specimen, were used. The experimental materials were advanced steels developed for applications in nuclear and power industry, Eurofer97 steel and ODS steel MA956. Finite elements analyses of realized tests together with application of micromechanical model of ductile fracture were carried out in order to evaluate stress strain fields at the crack tip in tested specimens from Eurofer97 steel. By comparison of experimental results and numerical simulations of J R curves the mutual dependencies between geometry of specimens and element sizes at the crack tip were derived. On the basis of acquired relationships, the methodology of J R curve prediction for standard specimen size from limited amount of test material was proposed. Main contribution of thesis is description of effect of material’s fracture toughness level on resistance against ductile crack propagation in miniature specimens. For material where significant crack growth occurs after exceeding the limit values of J integral (Eurofer97), the loss of constraint is considerable and highly decreases resistance against tearing. Miniature specimens then show significantly lower J R curves in comparison with standard size specimens. This effect is the opposite to the behaviour of miniature specimens in transition region. In case of material with low toughness, in which significant crack growth occurs in the region of J integral validity (ODS MA956), the effect of constraint loss is small without large impact on resistance against tearing. In such case miniature specimens demonstrate comparable J R curves as specimens of larger sizes. Next important contribution is proposed methodology for prediction of J R curve from small amount of test material using micromechanical modeling.
Determination of Fracture Mechanical Characteristics From Sub-Size Specimens
Stratil, Luděk ; Džugan, Jan (referee) ; Haušild, Petr (referee) ; Dlouhý, Ivo (advisor)
The standards of fracture toughness determination prescribe size requirements for size of test specimens. In cases of limited amount of test material miniature test specimens offer one from the possibilities of fracture toughness evaluation. Because of small loaded volumes in these specimens at the crack tip the loss of constraint occur affecting measured values of fracture toughness. In such cases the size requirements for valid fracture toughness characteristics determination are not fulfilled. These specimens can be even on limits of load range of test devices and handle manipulation by their small dimensions. The important task related to these specimens is, apart from methodology of their preparation and measurement of deformations, the interpretation of measured values of fracture toughness and their possible correction to standard test specimens. Moreover, in the upper shelf region of fracture toughness quantification and interpretation of size effects is still not resolved sufficiently. This thesis is by its aims experimentally computational study focused on evaluation of size effect on fracture toughness in the upper shelf region. The size effect was quantified by testing of miniature and large specimens’ sizes in order to determine J R curves. Two geometries of miniature test specimens, there point bend specimen and CT specimen, were used. The experimental materials were advanced steels developed for applications in nuclear and power industry, Eurofer97 steel and ODS steel MA956. Finite elements analyses of realized tests together with application of micromechanical model of ductile fracture were carried out in order to evaluate stress strain fields at the crack tip in tested specimens from Eurofer97 steel. By comparison of experimental results and numerical simulations of J R curves the mutual dependencies between geometry of specimens and element sizes at the crack tip were derived. On the basis of acquired relationships, the methodology of J R curve prediction for standard specimen size from limited amount of test material was proposed. Main contribution of thesis is description of effect of material’s fracture toughness level on resistance against ductile crack propagation in miniature specimens. For material where significant crack growth occurs after exceeding the limit values of J integral (Eurofer97), the loss of constraint is considerable and highly decreases resistance against tearing. Miniature specimens then show significantly lower J R curves in comparison with standard size specimens. This effect is the opposite to the behaviour of miniature specimens in transition region. In case of material with low toughness, in which significant crack growth occurs in the region of J integral validity (ODS MA956), the effect of constraint loss is small without large impact on resistance against tearing. In such case miniature specimens demonstrate comparable J R curves as specimens of larger sizes. Next important contribution is proposed methodology for prediction of J R curve from small amount of test material using micromechanical modeling.
The Gurson-Tvergaard-Needleman model calibration from sub-size test specimens by size corresponding to the half of Charpy specimen
Stratil, Luděk ; Šiška, Filip ; Hadraba, Hynek ; Dlouhý, Ivo
The paper deals with a utilization of miniaturized tensile specimens for purposes of local approach application from limited amount of test material. The motivation for application of those miniaturized specimens is the utilization of volume of test material corresponding to the half of Charpy specimen. The tensile testing of miniaturized specimens was conducted at room temperature in ductile regime of the Eurofer97 steel followed by detailed fractography and quantitative analysis of micromechanism of damage. The parameters of Gurson-Tvergaard-Needleman micromechanical model of ductile fracture were calibrated. Except for the slight differences in strength and deformation characteristics no other differences between two sizes of tensile specimens were found. The calibrated sets of parameters of GTN model using the same element size were very similar. The application of different calibrated sets of GTN model parameters for simulation of damage in cracked specimen (R-curve) is sensitive to the element size and needs its calibration.
A calibration of Gurson-Tvergaard- Needleman micromechanical model of ductile fracture
Stratil, Luděk ; Hadraba, Hynek ; Šiška, Filip ; Dlouhý, Ivo
Fracture mechanics characteristics of ductile fracture often depend on geometry and size of specimens. A micromechanical modelling of material damage proposes a tool for treatment of geometry and size effects in fracture mechanics. Application of micromechanical model for certain materiál requires a calibration of model‘s parameters. This contribution presents the calibration procedure of Gurson-Tvergaard-Needleman model of ductile fracture for Eurofer97 steel. The identification of ductile damage of the steel and its tensile properties at various level of stress triaxiality by testing smooth and notched bars were determined in the previous study. The calibration procedure was performed by hybrid method as a combination of FEA simulations of tensile tests and fractography analyses. The Gurson-Tvergaard-Needleman model performance is greatly influenced by true stress-true strain curve of the material.
Perspektivy užití MKP v lomové mechanice
Kozák, Vladislav
The possible application of the finite element analysis modelling fracture behaviour of components with defects are tested.The approaches based on the GTN model and cohesive model are compared.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.