National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Tracking membrane permeabilization on single lipid vesicles - method development.
Gücklhorn, David ; Šachl, Radek (advisor) ; Heřman, Petr (referee)
Protein complexes are challenging systems to study, especially when these complexes form on lipid membranes only for a short period of time. This is also the case of fibroblast growth factor 2 (FGF2), a protein that has many physiological and pathological functions in the human organism. It plays major role in the development of cancer as it promotes cell survival and angiogenesis. It also serves as a basis for development of novel treatments of nerve injuries. Despite being heavily studied for many years, it remains unclear how the protein is translocated into the extracellular space where it performs its function. To study complex systems such as FGF2 that self-assembles on the membrane into membrane penetrating pores we decided to develop a simple and efficient fluorescent microscopy method. This method is called double leakage single GUV assay (DLSGA). It utilizes giant unilamellar vesicles (GUVs) mimicking native cellular membranes. In a single experiment, up to 300 individual GUVs are imaged for the content of a leakage dye that reports on the presence of FGF2 pores. During three measurements and under different conditions, detailed information about pore-opening dynamics is gained for each GUV. Results of these measurements are then used to divide GUVs into six groups based on formation and...
Preparation of X. tropicalis recombinant growth factors and their characterization in testicular tissue culture.
Borecká, Marianna ; Krylov, Vladimír (advisor) ; Drobná Krejčí, Eliška (referee)
In our Laboratory of Developmental Biology there was established a long term culture derived from Xenopus tropicalis testes. It contains pre-Sertoli cells mostly. They compose a feeder layer allowing cultivation of stem cells, revealing the morphology of spermatogonial stem cells. This diploma thesis was focused on a preparation of two growth factors, FGF2 (fibroblast growth factor 2) and GDNF (glial cell line-derived neurotrophic factor), with the subsequent characterization of their influence at cell culture mentioned above. Factors were selected on the basis of the microenvironmental niche theory, according which FGF2 and GDNF are the most important factors for spermatogonial stem cells proliferation and self-renewal. FGF2 recombinant factor was gained using the expression plasmid pET-15b. Its characterization in the testicular culture brought surprising result. Even a low concentration of FGF2 factor (2.5ng/ml) caused cell detaching and dying. Similar result was previously shown in differentiating osteoblast culture only. More experiments need to be done to prove if apoptose take place and why do testicular cells act this way. Key words: Xenopus tropicalis, FGF2, GDNF, SSC, pre-Seroli cells
Preparation of X. tropicalis recombinant growth factors and their characterization in testicular tissue culture.
Borecká, Marianna ; Krylov, Vladimír (advisor) ; Drobná Krejčí, Eliška (referee)
In our Laboratory of Developmental Biology there was established a long term culture derived from Xenopus tropicalis testes. It contains pre-Sertoli cells mostly. They compose a feeder layer allowing cultivation of stem cells, revealing the morphology of spermatogonial stem cells. This diploma thesis was focused on a preparation of two growth factors, FGF2 (fibroblast growth factor 2) and GDNF (glial cell line-derived neurotrophic factor), with the subsequent characterization of their influence at cell culture mentioned above. Factors were selected on the basis of the microenvironmental niche theory, according which FGF2 and GDNF are the most important factors for spermatogonial stem cells proliferation and self-renewal. FGF2 recombinant factor was gained using the expression plasmid pET-15b. Its characterization in the testicular culture brought surprising result. Even a low concentration of FGF2 factor (2.5ng/ml) caused cell detaching and dying. Similar result was previously shown in differentiating osteoblast culture only. More experiments need to be done to prove if apoptose take place and why do testicular cells act this way. Key words: Xenopus tropicalis, FGF2, GDNF, SSC, pre-Seroli cells

Interested in being notified about new results for this query?
Subscribe to the RSS feed.