National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Double Casing Condensing Steam Turbine
Adámek, Tomáš ; Richard, Fichtl (referee) ; Fiedler, Jan (advisor)
This thesis is focused on calculation of double casing condensing steam turbine with capacity 200 MW for petrochemical industry´s consumptions. Engine is projected for gas-steam cycle. It has one controlled extraction points placed between two bodies, two uncontrolled extraction points and axial output to air-cooling condenser. Balance scheme was made for 100% operation. Detail design is made only for ST/NT casing and it includes calculation of flowing part, selection of blade´s profile and its stress control. Rotor is checked for critical speed, safety rigid coupling is calculated and according to reaction forces journal bearing are designed. In the end regulation of turbo-set is discussed more precisely and there are calculation of temperature and pressure in uncontrolled extraction points during 80% and 60% operation. Thesis was written out according to Doosan Skoda Power´s instruction and with their cooperation.
Steam Turbine for fossil power plant - MP LP casing
Třináctý, Jan ; Weber, Norbert (referee) ; Fiedler, Jan (advisor)
This thesis describes the design of a condensing steam turbine with reheating for fossil power plant. The turbine is a double parts. The first casing is formed by a simple HP casing. The second casing is combined MP-LP casing with axial outlet of steam into the water-cooled condenser. Feedwater regeneration system consists of two high-pressure heaters, the four low-pressure heaters and feed tank. In thesis is includes the calculation of heat balance and the draft of flow channel of HP and MP-LP casing. Next is a detailed calculation of MP-LP casing with includes calculation of flowing part, selection of blade´s profiles and its stress control. Rotor MP-LP casing is checked for torsion and computed size of the critical speed. Clutch is ispected by security check and draft radial bearings. Stress control casing is carried out according to the theory of thick shells. Work includes flow scheme for 100% and 75% performance. In the end is comparing the efficiency of the individual casing of the turbine with the work 3b together with the specific heat consumption. Work includes a longitudinal section of the MP-LP casing. This thesis has been developed in cooperation Škoda Power, Doosan.
Steam Turbine for fossil power plant - MP LP casing
Třináctý, Jan ; Weber, Norbert (referee) ; Fiedler, Jan (advisor)
This thesis describes the design of a condensing steam turbine with reheating for fossil power plant. The turbine is a double parts. The first casing is formed by a simple HP casing. The second casing is combined MP-LP casing with axial outlet of steam into the water-cooled condenser. Feedwater regeneration system consists of two high-pressure heaters, the four low-pressure heaters and feed tank. In thesis is includes the calculation of heat balance and the draft of flow channel of HP and MP-LP casing. Next is a detailed calculation of MP-LP casing with includes calculation of flowing part, selection of blade´s profiles and its stress control. Rotor MP-LP casing is checked for torsion and computed size of the critical speed. Clutch is ispected by security check and draft radial bearings. Stress control casing is carried out according to the theory of thick shells. Work includes flow scheme for 100% and 75% performance. In the end is comparing the efficiency of the individual casing of the turbine with the work 3b together with the specific heat consumption. Work includes a longitudinal section of the MP-LP casing. This thesis has been developed in cooperation Škoda Power, Doosan.
Double Casing Condensing Steam Turbine
Adámek, Tomáš ; Richard, Fichtl (referee) ; Fiedler, Jan (advisor)
This thesis is focused on calculation of double casing condensing steam turbine with capacity 200 MW for petrochemical industry´s consumptions. Engine is projected for gas-steam cycle. It has one controlled extraction points placed between two bodies, two uncontrolled extraction points and axial output to air-cooling condenser. Balance scheme was made for 100% operation. Detail design is made only for ST/NT casing and it includes calculation of flowing part, selection of blade´s profile and its stress control. Rotor is checked for critical speed, safety rigid coupling is calculated and according to reaction forces journal bearing are designed. In the end regulation of turbo-set is discussed more precisely and there are calculation of temperature and pressure in uncontrolled extraction points during 80% and 60% operation. Thesis was written out according to Doosan Skoda Power´s instruction and with their cooperation.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.