National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Utilizing psychoacoustic model and Wavelet Packet Transform for purposes of audio signal watermarking
Heitel, Tomáš ; Schimmel, Jiří (referee) ; Rajmic, Pavel (advisor)
This Thesis deals with a method to enforce the intellectual property rights and protect digital media from tampering – Digital Audio Watermarking. The main aim of this work is implement an audio watermarking algorithm. The theoretical part defined basic terms, methods and processes, which are used in this area. The practical part shows a process of embedding the digital signature into a host signal and her backward extraction. The embedding rule used spread spectrum technique and a psychoacoustic model. The implemented psychoacoustic model involves two properties of the human auditory system which are frequency masking and representation the frequency scale on limited bands called critical bands. The model is relatively new and based on the DWPT. In terms of above model is then the digital watermark embedded in the wavelet domain. This algorithm is implemented in technical software MATLAB. One part of this work focuses on robustness tests of the algorithm. Common signal processing modifications are applied to the watermarked audio as follows: Cutting of the audio, re-sampling, lossy compression, filtering, equalization, modulation effects, noise addition. The last part of the thesis presents subjective and objective methods usable in order to judge the influence of watermarking embedding on the quality of audio tracks called transparency.
Using masking effects for audio data watermarking
Kabourek, Jiří ; Schimmel, Jiří (referee) ; Zezula, Radek (advisor)
In this work is presented technique for embedding digital watermark in digital audio signals. Digital watermark must be imperceptible and should be robust against attacks and other types of distortion. Algorithm is implemented for embedding digital watermark using technique spread-spectrum and psychoacoustic model ISO-MPEG I layer I. Robustness was tested for filtering signal, MP3 compression and resample method.
Utilizing psychoacoustic model and Wavelet Packet Transform for purposes of audio signal watermarking
Heitel, Tomáš ; Schimmel, Jiří (referee) ; Rajmic, Pavel (advisor)
This Thesis deals with a method to enforce the intellectual property rights and protect digital media from tampering – Digital Audio Watermarking. The main aim of this work is implement an audio watermarking algorithm. The theoretical part defined basic terms, methods and processes, which are used in this area. The practical part shows a process of embedding the digital signature into a host signal and her backward extraction. The embedding rule used spread spectrum technique and a psychoacoustic model. The implemented psychoacoustic model involves two properties of the human auditory system which are frequency masking and representation the frequency scale on limited bands called critical bands. The model is relatively new and based on the DWPT. In terms of above model is then the digital watermark embedded in the wavelet domain. This algorithm is implemented in technical software MATLAB. One part of this work focuses on robustness tests of the algorithm. Common signal processing modifications are applied to the watermarked audio as follows: Cutting of the audio, re-sampling, lossy compression, filtering, equalization, modulation effects, noise addition. The last part of the thesis presents subjective and objective methods usable in order to judge the influence of watermarking embedding on the quality of audio tracks called transparency.
Using masking effects for audio data watermarking
Kabourek, Jiří ; Schimmel, Jiří (referee) ; Zezula, Radek (advisor)
In this work is presented technique for embedding digital watermark in digital audio signals. Digital watermark must be imperceptible and should be robust against attacks and other types of distortion. Algorithm is implemented for embedding digital watermark using technique spread-spectrum and psychoacoustic model ISO-MPEG I layer I. Robustness was tested for filtering signal, MP3 compression and resample method.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.