National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Bayesian and Neural Networks
Hložek, Bohuslav ; Rozman, Jaroslav (referee) ; Zbořil, František (advisor)
This paper introduces Bayesian neural network based on Occams razor. Basic knowledge about neural networks and Bayes rule is summarized in the first part of this paper. Principles of Occams razor and Bayesian neural network are explained. A real case of use is introduced (about predicting landslide). The second part of this paper introduces how to construct Bayesian neural network in Python. Such an application is shown. Typical behaviour of Bayesian neural networks is demonstrated using example data.
Active learning for Bayesian neural networks in image classification
Belák, Michal ; Šabata, Tomáš (advisor) ; Vomlelová, Marta (referee)
In the past few years, complex neural networks have achieved state of the art results in image classification. However, training these models requires large amounts of labelled data. Whereas unlabelled images are often readily available in large quantities, obtaining l abels takes considerable human effort. Active learning reduces the required labelling effort by selecting the most informative instances to label. The most popular active learning query strategy framework, uncertainty sampling, uses uncertainty estimates of the model being trained to select instances for labelling. However, modern classification neural networks often do not provide good uncertainty estimates. Baye sian neural networks model uncertainties over model parameters, which can be used to obtain uncertainties over model predictions. Exact Bayesian inference is intractable for neural networks, however several approximate methods have been proposed. We experiment with three such methods using various uncertainty sampling active learning query strategies.
Active learning for Bayesian neural networks in image classification
Belák, Michal ; Šabata, Tomáš (advisor) ; Vomlelová, Marta (referee)
In the past few years, complex neural networks have achieved state of the art results in image classification. However, training these models requires large amounts of labelled data. Whereas unlabelled images are often readily available in large quantities, obtaining l abels takes considerable human effort. Active learning reduces the required labelling effort by selecting the most informative instances to label. The most popular active learning query strategy framework, uncertainty sampling, uses uncertainty estimates of the model being trained to select instances for labelling. However, modern classification neural networks often do not provide good uncertainty estimates. Baye sian neural networks model uncertainties over model parameters, which can be used to obtain uncertainties over model predictions. Exact Bayesian inference is intractable for neural networks, however several approximate methods have been proposed. We experiment with three such methods using various uncertainty sampling active learning query strategies.
Bayesian and Neural Networks
Hložek, Bohuslav ; Rozman, Jaroslav (referee) ; Zbořil, František (advisor)
This paper introduces Bayesian neural network based on Occams razor. Basic knowledge about neural networks and Bayes rule is summarized in the first part of this paper. Principles of Occams razor and Bayesian neural network are explained. A real case of use is introduced (about predicting landslide). The second part of this paper introduces how to construct Bayesian neural network in Python. Such an application is shown. Typical behaviour of Bayesian neural networks is demonstrated using example data.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.