National Repository of Grey Literature 1 records found  Search took 0.01 seconds. 
Signature verification using neural network-based algorithms
Čírtek, Petr ; Kiac, Martin (referee) ; Myška, Vojtěch (advisor)
Signature is one of the most used biometrics in banking and contracting therefore is important to verificate signature authenticity. Verification can be done with the help of a forensic specialist or, thanks to the rise of advanced technology, with the help of a computing technology. The purpose of this thesis is to develop methods for signature verification using neural networks for Czech type of signature and to find out if adding manual extracted features to convolutional analysis could improve these methods. Neural networks seek to replicate the functioning of human brain, consisting of input neurons, several hidden layers and output neurons. Neural networks are one of the most popular artificial intelligence technologies for image analysis and classification. The proposed methods in this thesis work on the principles of convolutional networks. The first proposed method consist of three convolutional layers which extract important features from image of signature and pass them to fully connected classifier layer. This determines whether the signature is genuine or forgery. Also for this method there were created two functions which can interpret it's decision-making. The second method, siamese neural network, unlike the first, does not work with signatures independently, but uses a reference signature image to determine authenticity. The basis of this method is to extract features with convolutional analysis from both the reference signature and the signature to be authenticated. These features are then concatenated and passed to the clasificator. A Czech dataset was created to train models that would verify the Czech type of signatures. From the experiments, it was found that the addition of manualy extracted features has the potential to improve the prediction accuracy of methods based on convolutional image analysis. 3 models were trained, which can verify the Czech type of signatures with an accuracy higher than 80 \%, namely: the model of the convolutional neural network method with discrete wavelet transformation feature, which was trained on the Czech dataset, the model of the same method trained on the CEDAR dataset with number of strokes as added feature and a siamese convolutional neural network method model trained on the Czech dataset of signatures with the tri-surface feature.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.