National Repository of Grey Literature 50 records found  1 - 10nextend  jump to record: Search took 0.01 seconds. 
Study of manganese segregation in Mn-doped transparent alumina ceramics
Pišťák, Jan ; Maca, Karel (referee) ; Drdlík, Daniel (advisor)
This work deals with the preparation of Al2O3 ceramics doped with manganese, the study of basic physical and microstructural properties and the description of the dissolution kinetics of manganese in the Al2O3 matrix. Al2O3 ceramics and Al2O3 ceramics doped with 1 and 5 at.% Mn3O4 with different dopant particle sizes were successfully prepared by the slip casting method. The prepared ceramic materials were sintered at temperatures of 1100 and 1150 °C with different dwell times. The density in sintered samples was monitored depending on the preparation parameters and thermal treatment conditions. It was found during the microstructure observation that even at a relatively low temperature, the rapid dissolution of the dopant in the Al2O3 matrix occurred, while in the samples containing 1 at.% Mn3O4, this dopant was already completely dissolved. In the case of samples with a concentration of 5 at.% Mn3O4, a spinel phase was identified in the matrix. In addition, some samples were found to have unreacted dopant particles excreted from the matrix during ceramographic processing. Therefore, the goal of the bachelor thesis could not be completely fulfilled, i.e. the kinetics of dopant dissolution could not be studied for objective reasons.
Transparent polycrystalline ceramics at visible and infrared wavelenghts
Veselý, Jan ; Maca, Karel (referee) ; Trunec, Martin (advisor)
his thesis deals with preparation of transparent ceramic sheets made out of sub-µm alumina powder. Green bodies are prepared by ultraviolet (UV) curing of UV curable resin containing ceramic powder followed by debinding of organic parts at elevated temperature. High relative density of green bodies is essential for reduction of shrinkage during subsequent sintering process. Therefore high solids loading dispersions containing > 57 vol% ceramic particles are used. To reach transparent behaviour, porosity within the sheets must be reduced completely. Therefore hot isostatic pressing (HIP) is used as a final operation. Finally, light transmission and hardness measurements are presented. Possibilities of making high resolution microstructures using maskless lithography and some suggestions for use of the UV curing technique for production of complex-shaped 3D structures are briefly mentioned.
Influence of parameters of electrophoretic deposition on properties of ceramics
Husák, Roman ; Čelko, Ladislav (referee) ; Hadraba, Hynek (advisor)
Electrophoretic deposition is experimentally undemanding shaping method enabling preparation of ceramic material from stable suspension of ceramic particles by means of direct electric current. The aim of the work was to describe effect of electric current magnitude on velocity and final microstructural and mechanical properties of the ceramics. The alumina and zirconia layers were prepared by electrophoretic deposition from stable suspensions of ceramic particles in the isopropanol stabilised with monochloracetic acid. It was found that the real time dependance of particle deposition differs from the theoretical predisction for given electrical conditions. By precise measurement of kinetics of the electrophoretic deposition the actual electrophoretic mobility of the particles and the actual amount of particles taking part in the deposition process were found. It was found that with increasing the electrical current the actual electrophoretic mobility was decreased and actual amount of particles taking part in the deposition process was increased. The increasing velocity of particles under higher electrical currents led to the detorioration of particle arrangement in the elctrode and thus to the increasing of the pore sizes and final densities of the deposits. These microstructural changes reflected in the lowering of the hardness of the deposited ceramics of about 300HV5 in the case of alumina.
Laminated Ceramic Composites - Deposition, Structure and Properties
Drdlík, Daniel ; Maca, Karel (referee) ; Cihlář, Jaroslav (advisor)
The work was focused on the preparation of layered ceramic materials and their characterizations. The direct measurment of weight deposite for enhanced description of one component system was studied within this work. The kinetics of electrophoretic deposition obtained from theoretical calculation and from experimental values were confronted. It was prepared a lot of depositions for described kinetic of electrophoretic deposition with applied constant currents. The relative density and porosity were determined on the annealled and sintered bodies. The hardness measurments were performed on sintered bodies and then resulted values were confronted with the used currents. A ceramic composite based on Al2O3 and ZrO2 was prepared by using of precision describtion of electrophoretic deposition kinetic.
Composite Dental Biomaterials - Structure, Analysis and Properties
Matoušek, Aleš ; Vaněk,, Jiří (referee) ; Lapčík,, Lubomír (referee) ; Cihlář, Jaroslav (advisor)
The aim of this work is to define relations between grain size and bioaktivity of oxide ceramics, specifically ZrO2, Al2O3 and HA. Ceramic materials with grain size from 100 nm up to 10 m, with various surface roughness, were tested for its bioactivity. Ceramography analysis was performed for all tested materials to precisely describe microstructures. Biological properties of the ceramic materials were tested via dilation tests directly in-vitro and by in-vitro extraction. Three cell culturing lines: osteoblast MG63, fibroblast L929, and epithelioid HeLa, were used for our testing. An influence of the grain size on the biological response was only found for the ceramic materials which had been thermally etched. The thermally etched nanocrystalline samples had larger areas covered by cells than ceramics with coarse grain microstructure. Biological tests on layered composites Al2O3×ZrO2 showed the cell selection determined by the type of material, where ZrO2 surfaces were preferably covered. Improved biological response of nanocrystalline ZrO2 was demonstrated on ceramic ZrO2, Al2O3 and SiO2 substrates with nanocrystalline coating of ZrO2. In this work a novel technological process for the formation of defect-free coatings was developed. Sintered coatings were tested using in-vitro technique with cell line HeLa, L929 and MG63 for up to 72 hours. The results of the biological tests of nanocrystalline coatings were consistent with results from the bulk nanocrystalline thermally etched ZrO2 ceramics.
Influence of plasma activation of ceramic particles on ceramic technology and properties
Klevetová, Tereza ; Ráheľ,, Jozef (referee) ; Pouchlý, Václav (advisor)
This thesis is focused on the study of the influence of plasma activation of powder ceramic materials on sintered microstructure. In this experiment Diffuse Coplanar Surface Barrier Discharge (DSCBD) device was used for plasma treatment and two materials were chosen to be investigated – Al2O3 (TAI) and ZrO2 doped with 3 mol % Y2O3 (TZ). Two methods of powders dispergation in suspension were used – ultrasound and ball milling. The effect of using of DCSBD on alumina and zirconia powders was investigated by mercury intrusion porosimetry, dilatometry and by evaluation of final relative densities and grain sizes. Generally, was investigated that plasma surface activation of ceramic particles has measurable influence on the final microstructure. In comparison with the non-plasma treated alumina powders, plasma activated powders disperged with ultrasound and ball milling achieved lower values of grain size at comparable relative densities. In case of zirconia powders was observed that plasma treated powders achieve higher relative densities, if ultrasound was used. On the other hand, plasma treated zirconia powders disperged with ball milling achieve lower relative densities compared with non-plasma treated zirconia powders. Final sintering trajectory of plasma treated TZ powders disperged with ultrasound is comparable to the sintering trajectory of non-plasma treated zirconia powders disperged with ball milling and vice versa. Plasma surface treatment is the way of more ecological friendly preparation of suspension and its stabilization than the conventional stabilization methods using chemical additives.
Coextrusion of laminated ceramic bodies
Kaštyl, Jaroslav ; Cihlář, Jaroslav (referee) ; Trunec, Martin (advisor)
In the diploma thesis, an overview of the existing literature focused on the thermoplastic co-extrusion method was worked out and based on the findings, extrusion of the monolayer and homogenous bodies from ZrO2, Al2O3, ZTA a ATZ was studied. For thermoplastic extrusion the capillary rheometer was modified and the nozzle was designed and fabricated. Applying the co-extrusion method, homogenous ceramic rods and monolayer rods in structure core/layer: ZrO2/Al2O3, ZrO2/ATZ and ZTA/Al2O3 were fabricated. In monolayer rods, the interface quality and defects that originate during preparation were evaluated. Technological parameters and properties of homogenous rods were used to rate the structure and defects in monolayer rods. Monolayer rods ZrO2/ATZ and ZTA/Al2O3 with 2.5 mm diameter and 45 mm length (containing small defects) were prepared by thermoplastic co-extrusion.
Relation strength to nature of surface improvement of ceramic materials by etching and annealing
Vladyka, Petr ; Opravil, Tomáš (referee) ; Havlica, Jaromír (advisor)
The goal of diploma thesis is study of the effect of thermal annealing at different temperatures and different annealing durations on the surface structure of oxide ceramics based on Al2O3 and study of the samples porosity.
Microstructure revealing and analysis of partially sintered oxide ceramic materials
Jemelka, Marek ; Salamon, David (referee) ; Spusta, Tomáš (advisor)
The goal of this bachelor’s thesis is to experimentally determine appropriate etching conditions for etching of partially sintered advanced ceramic materials (Al2O3, ZrO2 + 3mol % Y2O3, ZrO2 + 8mol % Y2O3) with emphasis on minimal influence on the final surface microstructure. The obtained results show, that the optimal etching way of selected materials is thermal etching under conditions: Al2O3 (rel. 95,7 ± 0,9 %)- Te = 1015 C (Ts – 350 C), tetragon. ZrO2 (rel. 94,5 ± 0,6 %)- Te = 1005 C (Ts – 350 C), cubic. ZrO2 (rel. 94 ± 0,5 %)- Te = 1105 C (Ts – 350 C). The applying of chemical etching in H3PO4 for 60s led to revealing of the microstructure of Al2O3 and cubic ZrO2 in shorter times, but the procedure carries its difficulties of etching conditions determination and execution itself, which put it in the second place. Microstructure revealing via using focused ion beam was experimentally determined as inappropriate due to time and personnel demands.
Processing and properties of transparent polycrystalline ceramic materials
Tásler, Jan ; Pouchlý, Václav (referee) ; Maca, Karel (advisor)
The presented diploma thesis is focused on the preparation and properties of transparent polycrystalline ceramic materials based on Al2O3. Theoretically, the most important technological aspects of the processing of these materials are presented. Detailed attention is given to transparent Al2O3 polycrystalline ceramics doped with rare earth elements. The influence of microstructural parameters on the optical properties (represented by RIT) is investigated on Al2O3 samples doped and codoped with dysprosium, terbium and chromium. A significant effect of the average grain size on the light transmittance of all samples is observed. The highest RIT = 55 % (measured by a laser beam with a wavelength of 632,8 nm) was achieved by an optimized preparation process for a sample doped with 0,05 at. % of dysprosium. For all samples photoluminescent properties are also analysed. The photoluminescent emission spectra correspond to the activation of doping elements. In case of the terbium and chromium codoped samples, the differences in the activation of individual dopants depending on different excitation wavelengths were demonstrated, resulting in different colour emissions for different excitation wavelengths.

National Repository of Grey Literature : 50 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.