National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Finite element modelling of voice propagation through the vocal tract and around the human head
Tomeček, Vojtěch ; Pellant, Karel (referee) ; Švancara, Pavel (advisor)
This diploma thesis deals with creating of finite element model for the analysis of acustic waves radiation through human vocal tract and through the head surrounding space. The thesis contains a short overview of the anatomy of relevant parts and a short overview of formerly published models relevant to the topic. Then the process of creating the 3D model of human head, including the vocal tract, based on CT scans, and the mesh itself follows. This is succeeded by the computational solution taking in the acount the acoustic absorption of the vocal tract walls and radiation into the open space. The results gained are compared to relevant literature on this topic. The changes in frequency spectra in specific nodes of the mesh are reviewed and compared to relevant literature on the topic. The results could be used as basis of eventual frequention corrections of microphones used for voice diagnosis or registration in general, eg of speach or singing.
Acceleration of Ultrasound Neurostimulation Using Mixed-Precision Arithmetic
Duchoň, Radek ; Olšák, Ondřej (referee) ; Jaroš, Jiří (advisor)
K-Wave is an open source tool for acoustic and ultrasound simulation. Current available implementations are written in C++ and Matlab. The aim of this thesis is to accelerate the existing implementation of ultrasound simulation by means of lower precision calculations on Nvidia graphics cards using the CUDA software platform. Another benefit of this work should be a reduced memory requirement, which will enable larger simulations to be performed. However, due to the use, for example, for neurostimulation of the brain, the reduced accuracy must not disturb the results as a whole too much. It is therefore important to identify suitable quantities that can be stored in lower precision. In this work, possible approaches and their effectiveness in utilizing lower precision will be analyzed. Furthermore, a solution proposal will be made, which will include identifying potential variables for reduction. This will be followed by specifying the achieved implementation and its testing. The conclusion will focus on evaluating the solution based on the results obtained from the testing.
Finite element modelling of voice propagation through the vocal tract and around the human head
Tomeček, Vojtěch ; Pellant, Karel (referee) ; Švancara, Pavel (advisor)
This diploma thesis deals with creating of finite element model for the analysis of acustic waves radiation through human vocal tract and through the head surrounding space. The thesis contains a short overview of the anatomy of relevant parts and a short overview of formerly published models relevant to the topic. Then the process of creating the 3D model of human head, including the vocal tract, based on CT scans, and the mesh itself follows. This is succeeded by the computational solution taking in the acount the acoustic absorption of the vocal tract walls and radiation into the open space. The results gained are compared to relevant literature on this topic. The changes in frequency spectra in specific nodes of the mesh are reviewed and compared to relevant literature on the topic. The results could be used as basis of eventual frequention corrections of microphones used for voice diagnosis or registration in general, eg of speach or singing.
Acoustic-gravity, tidal, and planetary waves in the ionosphere
Koucká Knížová, Petra ; Mošna, Zbyšek ; Potužníková, Kateřina
Neutral atmosphere affects strongly the ionosphere. We study influence of the neutral wave activity on the ionosphere in range of periods from minutes to days (acoustic waves to planetary waves).

Interested in being notified about new results for this query?
Subscribe to the RSS feed.