National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Stress - strain analysis of jaw with tooth implant type BOI
Marcián, Petr ; Fuis, Vladimír (referee) ; Florian, Zdeněk (advisor)
Submitted master thesis deals with stress - strain analysis of jaw, with dental implant. The implant serve as a suitable pillar for crown or dental bridge, when one or more teeth are lost. The project is oriented on BOI (basale - oseo - integrable) dental implant type, which is produced by DENTALIHDE company. Stress – strain condition of the mandible system with implant have been established by computational simulation, with use of the final elements method. Important part of down jowl is simulated on with EDS and EDDS applied types of implants. After implementation the implant begins to heal. Therefore the special attention is paid to stress - strain states on various level of osteointegration. There is a detail description of production of single part computational model and his solving in the master thesis. Presentation of large chapter with results and subsequent alteration stress - strain analysis is part of the master thesis. Program SolidWorks 2005 was used to create the geometric model. Computational model and the actual solving was accomplished with use of ANSYS 11.0 and ANSYS Wor-kbench systems.
Stress - strain analysis of jaw with tooth implant type BOI
Marcián, Petr ; Fuis, Vladimír (referee) ; Florian, Zdeněk (advisor)
Submitted master thesis deals with stress - strain analysis of jaw, with dental implant. The implant serve as a suitable pillar for crown or dental bridge, when one or more teeth are lost. The project is oriented on BOI (basale - oseo - integrable) dental implant type, which is produced by DENTALIHDE company. Stress – strain condition of the mandible system with implant have been established by computational simulation, with use of the final elements method. Important part of down jowl is simulated on with EDS and EDDS applied types of implants. After implementation the implant begins to heal. Therefore the special attention is paid to stress - strain states on various level of osteointegration. There is a detail description of production of single part computational model and his solving in the master thesis. Presentation of large chapter with results and subsequent alteration stress - strain analysis is part of the master thesis. Program SolidWorks 2005 was used to create the geometric model. Computational model and the actual solving was accomplished with use of ANSYS 11.0 and ANSYS Wor-kbench systems.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.