National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
The role of stress granules and 4E-BP in heat-stressed cells of S. cerevisiae
Kolářová, Věra ; Hašek, Jiří (advisor) ; Zimmermannová, Olga (referee)
The cells are capable of very quick and specific reactions on stress conditions. Influence of translation, specifically initiation of translation by inhibition factors, is one of the main regulatory process. Two of eIF4E-binding proteins (4E-BP), Eap1p and Caf20p, are known as cap-dependent translation repressors in yeast Saccharomyces cerevisiae. We used in vivo fluorescent microscopy analysis to show different reaction of Caf20p and Eap1p to heat stress. Protein Caf20p does not react on heat shock and stays difused in cytoplasm. Contrary to Caf20p reaction, protein Eap1p accumulates in cytoplasm close to stress granules (SGs). This work shows that Eap1p is involved in stress granules assembly. In the absence of Eap1p, yeast cells react to the heat stress with small and less focused SGs. Dele- tion of CAF20 does not affect SG assembly. This points to specific function of SG in distribution of factors connected with stress reaction. Polysomal analysis shows that deletion of one of initiation translation repressors does not affect heat induced global repression of translation. In permisive condition deletion of EAP1 may cause defect in addition of 60S ribosomal subunits. Absence of protein Eap1p causes morphological defect. That point to a different reactions of Eap1p and Caf20p on heat stress and possible...
The role of stress granules and 4E-BP in heat-stressed cells of S. cerevisiae
Kolářová, Věra ; Hašek, Jiří (advisor) ; Zimmermannová, Olga (referee)
The cells are capable of very quick and specific reactions on stress conditions. Influence of translation, specifically initiation of translation by inhibition factors, is one of the main regulatory process. Two of eIF4E-binding proteins (4E-BP), Eap1p and Caf20p, are known as cap-dependent translation repressors in yeast Saccharomyces cerevisiae. We used in vivo fluorescent microscopy analysis to show different reaction of Caf20p and Eap1p to heat stress. Protein Caf20p does not react on heat shock and stays difused in cytoplasm. Contrary to Caf20p reaction, protein Eap1p accumulates in cytoplasm close to stress granules (SGs). This work shows that Eap1p is involved in stress granules assembly. In the absence of Eap1p, yeast cells react to the heat stress with small and less focused SGs. Dele- tion of CAF20 does not affect SG assembly. This points to specific function of SG in distribution of factors connected with stress reaction. Polysomal analysis shows that deletion of one of initiation translation repressors does not affect heat induced global repression of translation. In permisive condition deletion of EAP1 may cause defect in addition of 60S ribosomal subunits. Absence of protein Eap1p causes morphological defect. That point to a different reactions of Eap1p and Caf20p on heat stress and possible...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.