National Repository of Grey Literature 1 records found  Search took 0.00 seconds. 
Spin waves in non-trivial magnetic landscapes
Klíma, Jan ; Staňo, Michal (referee) ; Wojewoda, Ondřej (advisor)
Magnonics is a branch of physics dealing with spin waves, or their quanta – magnons. Spin waves are one of the candidates for beyond CMOS technology. Circuits and components utilizing the properties of spin waves have the potential to complement or replace the current technologies based on CMOS chips, which are nearing their physical limit. Information processing via spin waves requires the ability to effectively steer spin waves in magnonic circuits, especially in variously bent waveguides connecting individual circuit elements. Due to spin waves’ anisotropic behaviour, this remains on of the challenges to tackle. In the presented thesis, we used corrugating of the magnetic layer of the waveguides, which induces uniaxial magnetic anisotropy, with which we can control the magnetisation landscape in the waveguide with sub-micrometre precision. Using this approach, we can achieve zero-field-propagation of spin waves in desired modes in arbitrary directions. To aid our designs, we developed a model that analyses energy contributions and calculates the resulting effective magnetic field. Using this model and a thorough analysis of the dispersion relation, we designed a bent magnonic waveguide capable of steering spin waves, which we demonstrated by Brillouin light scattering microscopy.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.