National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Study of Metal Oxides and Hydroxides in Aqueous Solutions
Špičák, Petr ; Trnková, Libuše (referee) ; Kadlec, Jaromír (referee) ; Kazelle, Jiří (advisor)
This dissertation work deals with analysis of nickel hydroxide phases, their oxidation compounds, their stability and degradation mechanisms of electrochemically more active alpha phase on standard beta phase. The active material was prepared by both methods, electrodeposition and chemical precipitation. Main analysis method was Electrochemical Quartz Crystal Microbalance in combination with common analytical methods (cyclic voltammetry, potenciometry) can resolute between alpha and beta phases and quantitatively describe differences in main reaction by monitoring mass changes in the active material. Poor stability of the ?-Ni(OH)2 were improved by adding cations with valence two three and four into the structure instead of Ni atoms. The most important role plays cobalt and its hydroxide. Totally new way is to use titanium in combination with other cations. In electrolyte the most significant addition is LiOH, which has beneficial influent on cycle ability, stability in strong alkaline medium and cycle life.
Study of Metal Oxides and Hydroxides in Aqueous Solutions
Špičák, Petr ; Trnková, Libuše (referee) ; Kadlec, Jaromír (referee) ; Kazelle, Jiří (advisor)
This dissertation work deals with analysis of nickel hydroxide phases, their oxidation compounds, their stability and degradation mechanisms of electrochemically more active alpha phase on standard beta phase. The active material was prepared by both methods, electrodeposition and chemical precipitation. Main analysis method was Electrochemical Quartz Crystal Microbalance in combination with common analytical methods (cyclic voltammetry, potenciometry) can resolute between alpha and beta phases and quantitatively describe differences in main reaction by monitoring mass changes in the active material. Poor stability of the ?-Ni(OH)2 were improved by adding cations with valence two three and four into the structure instead of Ni atoms. The most important role plays cobalt and its hydroxide. Totally new way is to use titanium in combination with other cations. In electrolyte the most significant addition is LiOH, which has beneficial influent on cycle ability, stability in strong alkaline medium and cycle life.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.