National Repository of Grey Literature 1 records found  Search took 0.00 seconds. 
Labile elementosilicates as intermediates for design of novel materials
Yue, Qiudi ; Opanasenko, Maksym (advisor) ; Hronec, Mlan (referee) ; Zima, Vítězslav (referee)
Zeolites are crystalline microporous materials with three-dimensional frameworks built from corner-sharing TO4 tetrahedra. Traditionally, zeolites are defined as aluminosilicates (T = Si and Al). Nowadays, the skeleton atoms have been expanded to other tri-/tetra-valent elements, including B, Ga, Ge, Ti, etc., due to the chemical flexibility of zeolites. Resulting materials are termed as elementosilicates for respective element-containing zeolites. Such materials exhibit fascinating properties due to the different nature of elements in the framework, e.g. structural flexibility and tunable acidity. Taking advantage of the unique properties of elementosilicate zeolites, their applications as the starting solids for the synthesis of new materials and as adsorbents for gas separation have made great progress. However, the complexity of the factors affecting the zeolite synthesis limits the possibility to control the key parameters of zeolites formation, e.g. crystallization mechanism, crystal growth rate, and phase selectivity. From the another side, for particular zeolite systems being perspective for gas separation, correlation between the chemical composition of designed structures and their adsorption performance is elusive. Considering the above statements, this thesis was focused on the design...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.