National Repository of Grey Literature 7 records found  Search took 0.00 seconds. 
Movement preparation about young basketball players
Vorlová, Barbora ; Velenský, Michael (advisor) ; Kaplan, Aleš (referee)
Title: Movement preparation about young basketball players Objectives: The aim of this bachelor's thesis is to study the literature related to the issue of movement preparation of novice basketball players, then to find out the opinions of the respondents by means of an on-line questionnaire survey and to get a comprehensive view of this issue. Methods: The survey was done by means of an on-line questionnaire form via the Internet. Results: Through a questionnaire survey I found out the opinions of 47 Czech coaches of children and youth, which I compared with professional literature and came to the following results - the most suitable age for the beginning of basketball attendance is 8- 10 years old, the best way to achieve quality and long-lasting sports performance is to follow a developmentally appropriate training pathway with adherence to the principles of versatility and progressive loading; the main reasons for lessening participation rates in basketball at the ages between 10-15 appear to be interest in other hobbies; at the age of 15-20 years there is pressure to perform, other interests and health problems, which may be closely related to early specialization training. Keywords: basketball, movement preparation, youth, early specialization, training, questionnaire.
Analysis of serine racemase expression in the CNS of epileptic patients
Vorlová, Barbora ; Konvalinka, Jan (advisor) ; Maloy Řezáčová, Pavlína (referee)
Serine racemase is a pyridoxal-5'-phosphate dependent enzyme that converts L-serine to D-serine. D-serine is a recognized physiological co-agonist of N-methyl-D-aspartate type of glutamate receptors - key receptors that participate in the neurotransmission in the mammalian brain. Dysfunction of these receptors has been implicated in several neuropathologies, including schizophrenia, brain ischemia, neurodegenerative disorders and epilepsy. Serine racemase is thus a promising pharmaceutical target in these diseases. In this study, three anti-human serine racemase monoclonal antibodies were characterized and the best one was used for the Western blot detection of the enzyme in resected human epileptic tissues. For better interpretation of the results, accuracy of the tissue processing, the protein concentration determination and the Western blot quantification were verified. Finally, the activity of human serine racemase was determined with the L-serine-O-sulfate, the substrate with the highest-affinity to this enzyme. (Thesis in Czech)
Inhibitors of mouse serine racemase
Vorlová, Barbora
Serine racemase (SR) is a pyridoxal-5'-phosphate-dependent enzyme responsible for biosynthesis of D-serine, a recognized neurotransmitter acting as a co-activator of N-methyl- D-aspartate (NMDA) type of glutamate receptors in the mammalian central nervous system. The hyperfunction of the mentioned receptors have been shown to be implicated in many neuropathological conditions including Alzheimer's disease, amyotrophic lateral sclerosis and epilepsy. To alleviate the symptoms of these diseases, several artificial blockers of NMDA receptors have been introduced into the clinical practice. However, many of these compounds cause undesirable side effects and it is thus necessary to search for either less harmful blockers or regulators of other targets of pharmaceutical intervention that are involved in NMDA receptor activation. In this context, specific inhibition of serine racemase seems to be a promising strategy for regulation of NMDA receptor overstimulation. Mouse serine racemase shares 89% identity with its human ortholog and it was also shown that both enzymes possess similar kinetic parameters and inhibitor specificity. Therefore, the mouse models can be used to search for a potent human serine racemase inhibitor. Although many different compounds for their inhibitory potency towards serine...
Generation and Characterization of Glutamate Carboxypeptidase II (GCPII)-Deficient Mice
Vorlová, Barbora ; Šácha, Pavel (advisor) ; Eckschlager, Tomáš (referee) ; Bařinka, Cyril (referee)
Glutamate carboxypeptidase II (GCPII) is a transmembrane glycoprotein, which consists of short intracellular and transmembrane domains, and a large extracellular domain possessing carboxypeptidase activity. In the human body, GCPII fulfils a neuromodulatory function in the brain and facilitates folate absorption in the small intestine. In addition to the brain and small intestine, high level of GCPII is also present in the prostate and kidney. However, GCPII function in these tissues has not been determined yet. To study the role of GCPII in detail, several research groups attempted to inactivate GCPII encoding gene Folh1 in mice. Surprisingly, the experiments led to rather conflicting results ranging from embryonic lethality to generation of viable GCPII-deficient mice without any obvious phenotype. This dissertation project aimed to dissect the discrepancy using alternative strategy for gene modification. For this purpose, we designed TALENs that specifically targeted exon 11 of Folh1 gene and manipulated mouse zygotes of C57BL/6NCrl genetic background. We analysed all genetically modified mice of F0 generation for presence of TALEN-mediated mutations and established 5 different GCPII-mutant mouse colonies from founder mice that altogether carried 2 frame-shift mutations and 3 small in-frame...
Inhibitors of mouse serine racemase
Vorlová, Barbora
Serine racemase (SR) is a pyridoxal-5'-phosphate-dependent enzyme responsible for biosynthesis of D-serine, a recognized neurotransmitter acting as a co-activator of N-methyl- D-aspartate (NMDA) type of glutamate receptors in the mammalian central nervous system. The hyperfunction of the mentioned receptors have been shown to be implicated in many neuropathological conditions including Alzheimer's disease, amyotrophic lateral sclerosis and epilepsy. To alleviate the symptoms of these diseases, several artificial blockers of NMDA receptors have been introduced into the clinical practice. However, many of these compounds cause undesirable side effects and it is thus necessary to search for either less harmful blockers or regulators of other targets of pharmaceutical intervention that are involved in NMDA receptor activation. In this context, specific inhibition of serine racemase seems to be a promising strategy for regulation of NMDA receptor overstimulation. Mouse serine racemase shares 89% identity with its human ortholog and it was also shown that both enzymes possess similar kinetic parameters and inhibitor specificity. Therefore, the mouse models can be used to search for a potent human serine racemase inhibitor. Although many different compounds for their inhibitory potency towards serine...
Inhibitors of mouse serine racemase
Vorlová, Barbora ; Konvalinka, Jan (advisor) ; Vaněk, Ondřej (referee)
Serine racemase (SR) is a pyridoxal-5'-phosphate-dependent enzyme responsible for biosynthesis of D-serine, a recognized neurotransmitter acting as a co-activator of N-methyl- D-aspartate (NMDA) type of glutamate receptors in the mammalian central nervous system. The hyperfunction of the mentioned receptors have been shown to be implicated in many neuropathological conditions including Alzheimer's disease, amyotrophic lateral sclerosis and epilepsy. To alleviate the symptoms of these diseases, several artificial blockers of NMDA receptors have been introduced into the clinical practice. However, many of these compounds cause undesirable side effects and it is thus necessary to search for either less harmful blockers or regulators of other targets of pharmaceutical intervention that are involved in NMDA receptor activation. In this context, specific inhibition of serine racemase seems to be a promising strategy for regulation of NMDA receptor overstimulation. Mouse serine racemase shares 89% identity with its human ortholog and it was also shown that both enzymes possess similar kinetic parameters and inhibitor specificity. Therefore, the mouse models can be used to search for a potent human serine racemase inhibitor. Although many different compounds for their inhibitory potency towards serine...
Analysis of serine racemase expression in the CNS of epileptic patients
Vorlová, Barbora ; Maloy Řezáčová, Pavlína (referee) ; Konvalinka, Jan (advisor)
Serine racemase is a pyridoxal-5'-phosphate dependent enzyme that converts L-serine to D-serine. D-serine is a recognized physiological co-agonist of N-methyl-D-aspartate type of glutamate receptors - key receptors that participate in the neurotransmission in the mammalian brain. Dysfunction of these receptors has been implicated in several neuropathologies, including schizophrenia, brain ischemia, neurodegenerative disorders and epilepsy. Serine racemase is thus a promising pharmaceutical target in these diseases. In this study, three anti-human serine racemase monoclonal antibodies were characterized and the best one was used for the Western blot detection of the enzyme in resected human epileptic tissues. For better interpretation of the results, accuracy of the tissue processing, the protein concentration determination and the Western blot quantification were verified. Finally, the activity of human serine racemase was determined with the L-serine-O-sulfate, the substrate with the highest-affinity to this enzyme. (Thesis in Czech)

Interested in being notified about new results for this query?
Subscribe to the RSS feed.