National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Preparation and Plasmachemical Reduction of Model Corrosion Layers on Iron.
Sázavská, Věra ; Novák, Stanislav (referee) ; Zahoranová, Anna (referee) ; Krčma, František (advisor)
The plasmachemical removal process of corrosion layers is based on a reduction effect of RF hydrogen low-pressure plasma, and it is used for archaeological objects. Incrustation layers on artifact surface become brittle and porous due to plasma processing. The structure and composition of corrosion layers is changed. Therefore, it is much easier to recover the original surface of the plasma treated artifacts in contrary to those treated by conventional ways. Moreover, we can save time on invasive and thus dangerous mechanical removal of corrosion layers as for example sanding is. After plasma treatment, we can observe fine details of the original surface and memory of tools used during its manufacturing. These details are important information on the origin and manufacturing methods of the artifacts. The plasma reduction process leads to the removal of impurities from cavities as well, and a function of mechanical components of archaeological object can be restored. Moreover, chlorides can be easily removed from the corrosion layers and thus any significant post-corrosion is protected. Each archaeological object is original and it has its own “corrosion history”. First, the object had been exposed to the atmosphere for a long time. Then, it had been often placed in a tomb or grave or it otherwise got into the soil or sea. Thus, each archaeological object was exposed to different corrosion stress (humidity, composition of corrosive environment, etc.). Due to these facts, any universal way of a corroded object treatment is very difficult or even impossible to propose. In this work, the problem was solved using model samples of common metals which were treated at various plasma treatment conditions. Archaeological objects made of iron are the most common artifacts, and the typical corrosion products on iron are akaganeite, rokuhnite, and szomolnokite. These three corrosion products were created on the model samples in laboratory and then, the plasmachemical reduction was applied for their removal. The experiment was done in a Quartz cylindrical reactor with capacitive coupled RF plasma created using outer electrodes. We used discharge power from 100 W to 400 W in a continuous or pulsed regime (duty cycle of 75 %, 50 % and 25 %). Flowing plasma was created in pure hydrogen at pressure of 150200 Pa. Sample temperature was monitored by a thermocouple, and it did not exceed 200C during all these experiments. This temperature is regarded as a limit temperature for metallographic changes of archaeological iron. Higher temperature can cause destruction of archaeological iron objects. The optical emission spectroscopy of OH radical was used for the process monitoring. We focused on the monitoring of OH-radicals generated in the plasma, which are characteristic species formed by this process. Each corrosion product has a different time evaluation of generated OH-radicals, which is closely related to the degradation of a given corrosion product. Corrosion layers were analyzed before and after the plasmachemical reduction by SEM-EDX. We have found that the plasmachemical reduction is not very suitable for the szomolnokite corrosion product, which is degraded with difficulty and at high applied powers, only. However, very good removal efficiency was obtained for the rokuhnite and akaganeite corrosion.
Preparation and Plasmachemical Reduction of Model Corrosion Layers on Iron.
Sázavská, Věra ; Novák, Stanislav (referee) ; Zahoranová, Anna (referee) ; Krčma, František (advisor)
The plasmachemical removal process of corrosion layers is based on a reduction effect of RF hydrogen low-pressure plasma, and it is used for archaeological objects. Incrustation layers on artifact surface become brittle and porous due to plasma processing. The structure and composition of corrosion layers is changed. Therefore, it is much easier to recover the original surface of the plasma treated artifacts in contrary to those treated by conventional ways. Moreover, we can save time on invasive and thus dangerous mechanical removal of corrosion layers as for example sanding is. After plasma treatment, we can observe fine details of the original surface and memory of tools used during its manufacturing. These details are important information on the origin and manufacturing methods of the artifacts. The plasma reduction process leads to the removal of impurities from cavities as well, and a function of mechanical components of archaeological object can be restored. Moreover, chlorides can be easily removed from the corrosion layers and thus any significant post-corrosion is protected. Each archaeological object is original and it has its own “corrosion history”. First, the object had been exposed to the atmosphere for a long time. Then, it had been often placed in a tomb or grave or it otherwise got into the soil or sea. Thus, each archaeological object was exposed to different corrosion stress (humidity, composition of corrosive environment, etc.). Due to these facts, any universal way of a corroded object treatment is very difficult or even impossible to propose. In this work, the problem was solved using model samples of common metals which were treated at various plasma treatment conditions. Archaeological objects made of iron are the most common artifacts, and the typical corrosion products on iron are akaganeite, rokuhnite, and szomolnokite. These three corrosion products were created on the model samples in laboratory and then, the plasmachemical reduction was applied for their removal. The experiment was done in a Quartz cylindrical reactor with capacitive coupled RF plasma created using outer electrodes. We used discharge power from 100 W to 400 W in a continuous or pulsed regime (duty cycle of 75 %, 50 % and 25 %). Flowing plasma was created in pure hydrogen at pressure of 150200 Pa. Sample temperature was monitored by a thermocouple, and it did not exceed 200C during all these experiments. This temperature is regarded as a limit temperature for metallographic changes of archaeological iron. Higher temperature can cause destruction of archaeological iron objects. The optical emission spectroscopy of OH radical was used for the process monitoring. We focused on the monitoring of OH-radicals generated in the plasma, which are characteristic species formed by this process. Each corrosion product has a different time evaluation of generated OH-radicals, which is closely related to the degradation of a given corrosion product. Corrosion layers were analyzed before and after the plasmachemical reduction by SEM-EDX. We have found that the plasmachemical reduction is not very suitable for the szomolnokite corrosion product, which is degraded with difficulty and at high applied powers, only. However, very good removal efficiency was obtained for the rokuhnite and akaganeite corrosion.

See also: similar author names
2 Sázavská, Veronika
Interested in being notified about new results for this query?
Subscribe to the RSS feed.