National Repository of Grey Literature 8 records found  Search took 0.00 seconds. 
COHERENCE-CONTROLLED HOLOGRAPHIC MICROSCOPY IN DIFFUSE MEDIA
Lošťák, Martin ; Komrska, Jiří (referee) ; Šerý, Mojmír (referee) ; Chmelík, Radim (advisor)
This thesis deals with imaging through diffuse media in coherence-controlled holographic microscope (CCHM) developed in IPE FME BUT. The mutual coherence function as well as the signal dependence on the lateral mutual shift between both arms of the CCHM are calculated. Both functions are related to each other. The latter dependence is measured experimentally. A principle of imaging with CCHM through diffuse media with both ballistic and diffuse light is explained by a simple geometrical model. This model is then verified experimentally by imaging a sample through diffuse medium. The point spread function (PSF) of CCHM for imaging through diffuse media is then calculated. Results of PSF calculation are proved experimentally.
Programmable illuminating system for an optical microscope
Lošťák, Martin ; Křupka, Ivan (referee) ; Chmelík, Radim (advisor)
A programmable illuminating system (PIS) uses a commercial multimedia projector together with a suitable optical relay system in order to illuminate specimens under microscope with transmitted light. The theoretical part of the diploma thesis describes some methods used in the optical transmission microscopy. All of these methods employ physical masks placed in the condenser front focal plane. In the case of the traditional methods the masks are used to enhance contrast (e.g. dark-field illumination) and resolution (oblique illumination). One of the methods (a condenser with rotating aperture) provides the information about the three-dimensionality of the specimen. The next part of the thesis contains the theory and the basic classification of the illuminating systems used in the optical transmission microscopy. An optical and mechanical design of the optical relay system used for PIS is introduced. The experimental part shows the results made with two different PIS arrangements. It was shown on two different specimens that the PIS provides the same illumination as the classical methods. It was also proved that the PIS can simulate the rotating aperture in the condenser front focal plane and thus to give the information about the three-dimensionality of the specimen. Some new static and dynamic illuminating methods were introduced.
Light microscopy and its applications
Pokorný, Pavel ; Prochazka, David (referee) ; Lošťák, Martin (advisor)
This bachelor´s thesis describes problems of light microscopy for readers. Part of this bachelor´s thesis is dedicated to basic terms of the light microscopy. Next chapters are dedicated to observing techniques - brightfield illumination, darkfield illumination, oblique illumination, Rheinberg illumination, phase contrast, differential interference contrast, polarized light microscopy and fluorescence illumination.
Amplitude and phase objects observation through scattering media by means of coherence-controlled holographic microscope
Effenberger, Adam ; Lošťák, Martin (referee) ; Kollárová, Věra (advisor)
This diploma thesis deals with phase and amplitude objects observation through scattering media by means of a coherence-controlled holographic microscope (CCHM). A brief history of development and construction of the microscope, its advantages compared to the classical light microscopy and hologram processing are described. Quantitative phase imaging through scattering media by means of ballistic as well as diffuse light is verificated in the experimental part. A comparison of an image obtained through a scattering layer by means of CCHM and a classical microscopy in the light field is demonstrated.
COHERENCE-CONTROLLED HOLOGRAPHIC MICROSCOPY IN DIFFUSE MEDIA
Lošťák, Martin ; Komrska, Jiří (referee) ; Šerý, Mojmír (referee) ; Chmelík, Radim (advisor)
This thesis deals with imaging through diffuse media in coherence-controlled holographic microscope (CCHM) developed in IPE FME BUT. The mutual coherence function as well as the signal dependence on the lateral mutual shift between both arms of the CCHM are calculated. Both functions are related to each other. The latter dependence is measured experimentally. A principle of imaging with CCHM through diffuse media with both ballistic and diffuse light is explained by a simple geometrical model. This model is then verified experimentally by imaging a sample through diffuse medium. The point spread function (PSF) of CCHM for imaging through diffuse media is then calculated. Results of PSF calculation are proved experimentally.
Amplitude and phase objects observation through scattering media by means of coherence-controlled holographic microscope
Effenberger, Adam ; Lošťák, Martin (referee) ; Kollárová, Věra (advisor)
This diploma thesis deals with phase and amplitude objects observation through scattering media by means of a coherence-controlled holographic microscope (CCHM). A brief history of development and construction of the microscope, its advantages compared to the classical light microscopy and hologram processing are described. Quantitative phase imaging through scattering media by means of ballistic as well as diffuse light is verificated in the experimental part. A comparison of an image obtained through a scattering layer by means of CCHM and a classical microscopy in the light field is demonstrated.
Programmable illuminating system for an optical microscope
Lošťák, Martin ; Křupka, Ivan (referee) ; Chmelík, Radim (advisor)
A programmable illuminating system (PIS) uses a commercial multimedia projector together with a suitable optical relay system in order to illuminate specimens under microscope with transmitted light. The theoretical part of the diploma thesis describes some methods used in the optical transmission microscopy. All of these methods employ physical masks placed in the condenser front focal plane. In the case of the traditional methods the masks are used to enhance contrast (e.g. dark-field illumination) and resolution (oblique illumination). One of the methods (a condenser with rotating aperture) provides the information about the three-dimensionality of the specimen. The next part of the thesis contains the theory and the basic classification of the illuminating systems used in the optical transmission microscopy. An optical and mechanical design of the optical relay system used for PIS is introduced. The experimental part shows the results made with two different PIS arrangements. It was shown on two different specimens that the PIS provides the same illumination as the classical methods. It was also proved that the PIS can simulate the rotating aperture in the condenser front focal plane and thus to give the information about the three-dimensionality of the specimen. Some new static and dynamic illuminating methods were introduced.
Light microscopy and its applications
Pokorný, Pavel ; Prochazka, David (referee) ; Lošťák, Martin (advisor)
This bachelor´s thesis describes problems of light microscopy for readers. Part of this bachelor´s thesis is dedicated to basic terms of the light microscopy. Next chapters are dedicated to observing techniques - brightfield illumination, darkfield illumination, oblique illumination, Rheinberg illumination, phase contrast, differential interference contrast, polarized light microscopy and fluorescence illumination.

See also: similar author names
1 Lošťák, Michal
3 Lošťák, Miroslav
Interested in being notified about new results for this query?
Subscribe to the RSS feed.