National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Study of Thermal Properties of Materials for 3D Printing
Lapčíková, Tereza ; Menčík, Přemysl (referee) ; Zmeškal, Oldřich (advisor)
The aim of this bachelor thesis was to study thermal properties of materials used for 3D printing (so-called filaments), especially a polylactic acid (PLA). Within the theoretical part there was performed the literature review focused on the description of different methods of 3D printing including the summary of suitable materials for these technologies. In particular, we focused on the preparation of PLA, its summarization of its chemical, physical and thermal properties and its practical use in 3D additive printing manufacturing, e.g. in biomedical applications. In the experimental part, PLA samples of different thicknesses were prepared by 3D printing technique and thermal properties such as thermal capacity and thermal conductivity were determined. It was found that thermal conductivity of studied material was 0,128 W/m/K and specific heat capacity 1335 J/kg/K. These values corresponded to the once given in the literature.
Study of energy accumulation during phase change of paraffin wax
Lapčíková, Tereza ; Krouská, Jitka (referee) ; Zmeškal, Oldřich (advisor)
This thesis deals with the study of the process of energy storage during phase transformation, the so-called latent heat for commercial materials of the Rubitherm® RT line (Rubitherm Technologies GmbH) with applications in the construction industry. The thermophysical properties of Rubitherm® RT35HC, RT28HC and RT18HC materials differing in phase transformation temperature were investigated using the transient method. For the Rubitherm® RT35HC material a value of the thermal conductivity coefficient in the solid phase of 0.21 W/m/K and in the liquid phase of 0.23 W/m/K was determined. The specific heat capacity value in the solid phase was determined to be 1980 J/kg/K and in the liquid phase 1995 J/kg/K. For Rubitherm® RT28HC, the value of the thermal conductivity coefficient in the solid phase was determined to be 0,23 W/m/K and the value of the specific heat capacity in the solid phase was determined to be 1997 J/kg/K. For the Rubitherm® RT18HC material, a liquid phase thermal conductivity coefficient of 0,27 W/m/K and a liquid phase specific heat capacity of 2010 J/kg/K were determined. Using differential scanning calorimetry (DSC), the melting temperature of the Rubitherm® RT28HC sample was determined at 27.43 °C and solidification at 23.51 °C, while for the Rubitherm® RT35HC sample melting occurred at 36.51 °C and solidification at 31.86 °C and 32.28 °C. In the experimental part of this work, modifications were made to the measuring apparatus used in such a way that it could be used for the study of materials that change their state of matter during the experiment.
Study of Thermal Properties of Materials for 3D Printing
Lapčíková, Tereza ; Menčík, Přemysl (referee) ; Zmeškal, Oldřich (advisor)
The aim of this bachelor thesis was to study thermal properties of materials used for 3D printing (so-called filaments), especially a polylactic acid (PLA). Within the theoretical part there was performed the literature review focused on the description of different methods of 3D printing including the summary of suitable materials for these technologies. In particular, we focused on the preparation of PLA, its summarization of its chemical, physical and thermal properties and its practical use in 3D additive printing manufacturing, e.g. in biomedical applications. In the experimental part, PLA samples of different thicknesses were prepared by 3D printing technique and thermal properties such as thermal capacity and thermal conductivity were determined. It was found that thermal conductivity of studied material was 0,128 W/m/K and specific heat capacity 1335 J/kg/K. These values corresponded to the once given in the literature.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.