National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Circularly polarized antenna integrated into 3D knitted fabric
Drápal, Ladislav ; Kadlec, Petr (referee) ; Raida, Zbyněk (advisor)
The thesis deals with the circularly polarized planar antenna with a working frequency of 5.8 GHz, which was published in [1]. For the antenna, a numerical model in ANSYS HFSS was created to verify the correctness of published parameters. The antenna [1] is of a relatively complicated geometry. In order to demonstrate sense of this geometry, a numerical model of a circularly polarized patch antenna with a working frequency of 5.8 GHz [2] was created. Simulated parameters of both the circularly polarized antennas were mutually compared. The antenna [1] was shown to exhibit a better directivity and a higher gain in the main lobe direction. Both the antennas were then optimized for the 2.4 GHz operation band and a textile substrate. Simulations showed that the patch antenna exhibits on a lower frequency and a textile substrate a higher gain and a better directivity. Both the antennas were manufactured by using a copper foil. The circularly polarized planar antenna [1] was additionally manufactured by screen printing to achieve better parameters. Measurement showed that the best parameters reach the patch antenna [2]. Planar antennas [1] in the 2.4 GHz frequency band did not meet the expectations by the size and complexity on the textile substrate.
Circularly polarized antenna integrated into 3D knitted fabric
Drápal, Ladislav ; Kadlec, Petr (referee) ; Raida, Zbyněk (advisor)
The thesis deals with the circularly polarized planar antenna with a working frequency of 5.8 GHz, which was published in [1]. For the antenna, a numerical model in ANSYS HFSS was created to verify the correctness of published parameters. The antenna [1] is of a relatively complicated geometry. In order to demonstrate sense of this geometry, a numerical model of a circularly polarized patch antenna with a working frequency of 5.8 GHz [2] was created. Simulated parameters of both the circularly polarized antennas were mutually compared. The antenna [1] was shown to exhibit a better directivity and a higher gain in the main lobe direction. Both the antennas were then optimized for the 2.4 GHz operation band and a textile substrate. Simulations showed that the patch antenna exhibits on a lower frequency and a textile substrate a higher gain and a better directivity. Both the antennas were manufactured by using a copper foil. The circularly polarized planar antenna [1] was additionally manufactured by screen printing to achieve better parameters. Measurement showed that the best parameters reach the patch antenna [2]. Planar antennas [1] in the 2.4 GHz frequency band did not meet the expectations by the size and complexity on the textile substrate.

See also: similar author names
2 Drápal, Libor
4 Drápal, Lubomír
2 Drápal, Luděk
3 Drápal, Lukáš
Interested in being notified about new results for this query?
Subscribe to the RSS feed.