National Repository of Grey Literature 6 records found  Search took 0.00 seconds. 
Frictionless contact of elastic bodies: comparison of treatment in finite element analysi and isogeometric analysis
Kopačka, Ján ; Kolman, Radek ; Gabriel, Dušan ; Plešek, Jiří
Artificial oscillations in contact force due to non-smooth contact surface are treated by isogeometric analysis (IGA). After brief overview of B-splines and Non-Uniform Rational B-Splines (NURBS) representation, the mortar-based contact algorithm is presented in the frictionless small deformation regime. Contact constraints are regularized by penalty method. The contact algorithm is tested by means of contact patch test.
Mass lumping methods for the semi-loof shell element
Sháněl, Vít ; Kolman, Radek ; Plešek, Jiří
Mass matrix diagonalization in terms of a finite element method (FEM) is essential for an effective deployment of the explicit method as one of the direct integration methods of the motion equations of elastodynamics. A particular attention is focused on the mass matrix diagonalization of the semi-loof shell element. Its diagonalization requires a specially designed universal diagonalization scheme that is derived from the scaling HRZ method. Another analyzed aspect is the problem of preserving the moment of inertia for various types of finite elements. The proposed scheme is implemented in the finite element program and consequently tested on several problems
B-spline finite element method in one-dimensional elastic wave propagation problems
Kolman, Radek ; Plešek, Jiří ; Okrouhlík, Miloslav
In this paper, the spline variant of finite element method (FEM) is tested in one-dimensional elastic wave propagation problems. The special attention is paid to propagation of stress discontinuities as an outcome of the shock loading and also to spurious oscillations occurring near theoretical wavefronts. Spline variant of FEM is a modern strategy for numerical solution of partial differential equations.
Mass Lumping Methods for the SemiLoof Shell Element
Sháněl, Vít ; Kolman, Radek ; Plešek, Jiří
A particular attention is focused on the mass matrix diagonalization of the semi-loof shell element. Mass matrix diagonalization in terms of a finite element method (FEM) is essential for an effective deployment of the explicit method as one of the direct integration methods of the motion equations of elastodynamics.
One-dimensional dispersion analysis of B-spline based finite element method
Kolman, Radek ; Plešek, Jiří ; Okrouhlík, Miloslav ; Gabriel, Dušan
The dispersion bahaviour of B-spline finite element method is studied and compared with classical finite element method using the Lagrangian interpolation polynomials.
Analysis of classical and spectral finite element spatial discretization in one-dimensional elastic wave propagation
Kolman, Radek ; Plešek, Jiří ; Okrouhlík, Miloslav ; Gabriel, Dušan
The spatial discretization of continuum by finite element method introduces the dispersion error to numerical solutions of stress wave propagation. For higher order finite elements there are the optical modes in the spectrum resulting in spurious oscillations of stress and velocity distributions near the sharp wavefront. Spectral finite elements are of h-type finite element, where nodes have special positions along the elements corresponding to the numerical quadrature schemes, but the displacements along element are approximated by Lagrangian interpolation polynomials. In this paper, the classical and Legendre and Chebyshev spectral finite elements are tested in the one-dimensional wave propagation in an elastic bar.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.