National Repository of Grey Literature 42 records found  1 - 10nextend  jump to record: Search took 0.00 seconds. 
Hybrid Blends of Recycled Plastics
Černý, Miroslav ; Lehocký, Marián (referee) ; Balgová,, Vendula (referee) ; Jančář, Josef (advisor)
Work describes the relationship between structure and mechanical properties in case of hybrid mixtures. They are composed from polyurethane matrices (eventually polyurethane-urea or polyurethane-inorganic filler mixtures), different rubber fractions as filler and eventually reinforcement made from PET monofilaments. Mechanical behaviour was studied by tensile testing. Studied mechanical properties include tensile modulus, ultimate strength and strain and also specific energy need neccessary for ultimate strength achievement. Prepared materials are naturally porous. Therefore their mechanical behaviour has to be described generally for porous composites. The porosity occurence means, that it is difficult to describe them by models valid for mechanical behaviour (mainly elastic modulus) of nonporous composites. Models are also based on idealized structures on microscopic level. In case of porous composites, it is very difficult to create any idealized structure. The structure is changed with modifications of composition (change of components or their rates). These conditions have lead to utilizing of different approach how to describe the relationship between structure and mentioned mechanical properties. The chosen approach comes from knewledge about structural parametres coming from porosity. Structural parameters describe the structure on macroscopic level. They include interspace volume (volume lying between filler particles), interspace filling (how the matrix fills the interspace volume) and matrix volume fraction. Proposed parameters are used in relations, where they are fitted by exponents to interlay values of chosen mechanical properties for composites containing discrete matrix and filler. Found exponents are then described by properties of matrices to obtain relations describing properties of filled porous materials. Very similar approach was chosen for description in the case of reinforced composites. Proposed relation are potentially valid for materials containing binding matrix, infinity count of fillers and one kind of reinforcement.
FIRST PRINCIPLES ANALYSIS OF MECHANICAL STABILITY OF SOLID CRYSTALS
Řehák, Petr ; Buršík, Jiří (referee) ; Šob, Mojmír (referee) ; Černý, Miroslav (advisor)
The aim of the author’s research in the period of his PhD study was the analysis of mechanical stability of cubic crystals under external loading. This work demonstrates several methods used for a study of mechanical stability of fcc crystals (C, Al, Ir, Pt, Au) during isotropic (hydrostatic) tensile loading. Ab initio methods were used for this purpose. Studied crystals were subjected to simulated isotropic tensile deformation and an analysis of elastic stability was performed. This analysis shows that first elastic instability in Al, Pt and Au crystals corresponds to vanishing of the trigonal shear modulus and diamond, Ir remains stable up to the state of maximum isotropic stress. According to the calculated band structure diamond crystal preserves his insulating character up to the onset of instability. Consequently, phonon spectra of all crystals were calculated using the linear response method and their dynamic stability was assessed. Obtained results reveal soft phonon modes in Al, Pt and Ir before an occurrence of elastic instability. Selected short-wavelength instabilities are confirmed using models of microscopic deformation and also using dispersion curves obtained by a supercell method. The observed instabilities lower critical strains related to the volumetric instability up to 40 % whereas the reduction of critical stress is by 20 % at the most.
QUANTUM MECHANICAL STUDY OF PHASE STABILITY IN METALLIC SYSTEMS
Káňa, Tomáš ; Vřešťál, Jan (referee) ; Paidar,, Václav (referee) ; Černý, Miroslav (referee) ; Šob, Mojmír (advisor)
This work presents a theoretical study of stability of phases in selected metallic systems. We propose a model of structural transformations in transition metal disilicides MoSi2, CrSi2, VSi2 and TiSi2 and in Pd thin films grown on cubic substrates W(001) and Nb(001). The obtained results yield the total energy proles for the structural transformations studied, the activation energies needed for each individual transformation and an estimate of the temperature at which the structure can transform. The total energies are calculated by full-potential linearized augmented plane waves (FLAPW) method incorporated in the WIEN2k code. Both generalized gradient approximation (GGA) and local density approximation (LDA) are employed for the exchange-correlation term. It turns out that temperatures corresponding to the activation energies of structural transformations in transition metal disilicides exceed their melting temperatures. Comparing the resulting total energy proles to those obtained by the semiempirical Bond Order interatomic potentials (BOP) substantially helps to adjust the fitting parameters of the BOPs. The estimated temperature of 168 K needed to transform the hcp structure of an innite Pd crystal into the dhcp structure explains the behavior of the Pd thin lm on W(001) and Nb(001) substrates. Pd lms deposited on W(001) substrate and thicker than about 100 monolayers undergo this transformation already at room temperature. Thinner lms need to be annealed at 400 K rst, due to their stronger interaction with the substrate. The difference between the computed result and a real temperature at which the hcp Pd lm transforms its structure to the dhcp can be explained by both the interaction between the lm and the substrate and by the inuence of the domain topology of the lm. Analyzing different models of transformation of the initial hcp Pd structure to the ground state fcc structure, we identied the optimum model that respects the domain topology of the Pd lm.
Bio-based composites made from lactic acid resins
Smiřický, Jan ; Černý, Miroslav (referee) ; Figalla, Silvestr (advisor)
This bachelor thesis is about the synthesis of polyurethane glue, which is capable of gluing together sawdust, and about the testing of the mechanical characteristics of the glue and sawdust compostion. This glue is biodegradable and is created from renewable resources, this is why it could be an appropriate replacement for phenol formaldehyde, melamine, and urea formaldehyde resins. Another indisputable advantage is the absence of arenes in the macromolecule structure, which can be carcinogenic. In this synthesis, the compounds polylactic acid and hexamethylene diisocyanate were chosen, the former as the polyol and the latter as the isocyanate. In the theoretical section of the thesis, the used compounds are described in terms of their characteristics, their creation and the tests of the composites as well. In the experimental section, the conducted experiments are described.
First-principles study of stability of solid crystals
Pleskot, Ondřej ; Šesták, Petr (referee) ; Černý, Miroslav (advisor)
This work deals with a modeling of an electronic structure of solid crystals. Specifically, densities of valence electrons, and the density of states are calculated using first-principles code VASP for three crystals representing three different types of bonding. These are the metal bonding in a crystal of aluminum, the covalent bonding in a diamond crystal, and an ionic bonding in the crystal of rock salt. From calculated values of stress and crystal energy are then determined some macroscopic parameters of crystals, such as the equilibrium lattice parameter, the bulk modulus and the theoretical strength under isotropic tension.
Vinyl prepolymers - methods of preparation and application
Černý, Miroslav ; Petrůj, Jaroslav (referee) ; Kučera, František (advisor)
The theoretical part of this thesis is focused on bulk radical polymerization of styrene, methylmethacrylate, vinyltoluene and paramethylstyrene. It summarizes actual informations about kinetics and performance possibilities of bulk polymerization. Experimental part deals with polystyrene prepolymers preparation by bulk polymerization. The aim is to find optimal conditions for prepolymers preparation. Prepolymers should be usable for subsequent polymerization nearly up to 100% conversion. Conversion values were gravimetrically determined and molecular weights were obtained by viskosity measurements, which were realized by Ubbelohde viscometer. In the experimental part, there were performed simulations targeted on conversion dependence on time. The purpose was a prediction of monomer conversion at a given time during polymerization. Differences between reality and simulation were low in most of cases and the found form of kinetic behavior calculations provides satisfying results. In the conclusion of this thesis was suggested a new procedure for polystyrene prepolymers preparation.
Stability of crystalline solids from first principles
Řehák, Petr ; Šob, Mojmír (referee) ; Černý, Miroslav (advisor)
This work deals with study of stability of solid crystals under isotropic loading. Ab initio methods were used for this purpose. Crystals of four fcc metals (Al, Cu, Ir, Au) and diamond were subjected to simulated isotropic tensile deformation and maximum value of isotropic stress was evaluated for them. Consequently, phonon spectra were calculated for several strain values in order to assess crystal stability. Phonon instabilities in dispersion curves of diamond, Al, Ir and Au appeared at strains lower than those corresponding to their decohesion. This appearance of instability determinates the value of ideal strength. However, significant reduction (by about 20%) was found only in the cases of Au and Ir.
Polymeric nanocomposites - preparation methods
Černý, Miroslav ; Žídek, Jan (referee) ; Kučera, František (advisor)
Literature search of bachelor thesis was focused to methods of CaCO3 nanoparticles preparation, surface modification and PS/CaCO3 nanocomposites processing. Experimental part was based on two methods of PS/CaCO3 nanocomposites preparation: emulsion and bulk technique of styrene radical polymerization in presence of CaCO3 and by compounding CaCO3 with PS in Brabender mixer at 220 °C. Prepared samples were observed using electron microscope.
Deformation mechanisms in crystals by means of molecular dynamics
Lamberský, Vojtěch ; Grepl, Robert (referee) ; Černý, Miroslav (advisor)
This work deals with molecular dynamics modeling of processes in condensed matter on atomic level. The physical principles used to predict motion of atom or molecule groups are described in the retrieval part. Then follows a description of the EAM method, ways how to parallelize computing on many processors and how perform calculation optimizing. Finally, we perform a theoretical tensile strength computation using Lammps program.
The effect of impurities on the interface cohesion in multilayers in transition metal nitrides
Češka, Jakub ; Zelený, Martin (referee) ; Černý, Miroslav (advisor)
This work deals with the study of transtition metal nitride multilayers using first-principles calculations. Objects of this study are three particular systems AlN / TiN, AlN / VN and TiN / VN. Studied systems are in the B1 structure with an interface along the (001) plane. The main goal is to unravel the effect of impurity on cohesion in these multilayers. The impurity in question is a substitutional O atom replacing N in the lattice. Preferred positions of these substitutions are predicted for three different concentrations of substitution impurity. These predictions are based on the energy balance of substitutions in different positions. Resulting preferred positions within the multilayer may differ depending on the oxygen concentration. In most cases, the preferred position is at the interface between the two nitrides. For such systems with oxygen impurity in the preferred position a cleavage energy along several (001) planes is calculated. The effect of the impurity on the value of cleavage energy depends on its concentration. In the case of AlN / TiN multilayer, a suitable concentration of the impurity may increase the cleavage energy of the weakest link in multilayer compared to clean multilayer. In other cases the presence of impurity either causes a decrease in the cleavage energy or does not significantly affect its value.

National Repository of Grey Literature : 42 records found   1 - 10nextend  jump to record:
See also: similar author names
97 ČERNÝ, Martin
42 ČERNÝ, Michal
2 Černý, M.
10 Černý, Marcel
13 Černý, Marek
4 Černý, Marian
97 Černý, Martin
12 Černý, Matej
3 Černý, Matouš
12 Černý, Matěj
4 Černý, Michael
42 Černý, Michal
1 Černý, Mikuláš
2 Černý, Milan
3 Černý, Miloslav
5 Černý, Miloš
20 Černý, Miroslav
Interested in being notified about new results for this query?
Subscribe to the RSS feed.